下载
中文
注册

aclnnBinaryCrossEntropyWithLogits

接口原型

每个算子有两段接口,必须先调用“aclnnXxxGetWorkspaceSize”接口获取入参并根据计算流程计算所需workspace大小,再调用“aclnnXxx”接口执行计算。两段式接口如下:

  • 第一段接口:aclnnStatus aclnnBinaryCrossEntropyWithLogitsGetWorkspaceSize(const aclTensor* self, const aclTensor* target, const aclTensor* weightOptional, const aclTensor* posWeightOptional, int64_t reduction, aclTensor* out, uint64_t* workspaceSize, aclOpExecutor** executor)
  • 第二段接口:aclnnstatus aclnnBinaryCrossEntropyWithLogits(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, const aclrtStream stream)

功能描述

  • 算子功能:计算logits输出self与标签target之间的BCE损失函数(Binary CrossEntropy Loss)。
  • 计算公式:
    • 单标签场景

    • 多标签场景

aclnnBinaryCrossEntropyWithLogitsGetWorkspaceSize

  • 接口定义:

    aclnnStatus aclnnBinaryCrossEntropyWithLogitsGetWorkspaceSize(const aclTensor* self, const aclTensor* target, const aclTensor* weightOptional, const aclTensor* posWeightOptional, int64_t reduction, aclTensor* out, uint64_t* workspaceSize, aclOpExecutor** executor)

  • 参数说明:
    • self:连接层输出,Device侧的aclTensor,数据类型支持FLOAT、FLOAT16,支持非连续的Tensor,数据格式支持ND。
    • target:label标签值,Device侧的aclTensor,数据类型支持FLOAT、FLOAT16,支持非连续的Tensor,数据格式支持ND。
    • weightOptional:可选入参,二分交叉熵权重,Device侧的aclTensor,数据类型支持FLOAT、FLOAT16,支持非连续的Tensor,数据格式支持ND。
    • posWeightOptional:可选入参,各类的正类权重,Device侧的aclTensor,数据类型支持FLOAT、FLOAT16,支持非连续的Tensor,数据格式支持ND。
    • reduction:可选入参,输出结果计算方式,Host侧的int类型值。 取值支持0、1、2,0代表None不操作,1代表Mean求损失函数均值,2代表Sum求损失函数的和。
    • out:输出误差,Device侧的aclTensor,数据类型支持FLOAT,支持非连续的Tensor,数据格式支持ND。
    • workspaceSize:返回用户需要在Device侧申请的workspace大小。
    • executor:返回op执行器,包含了算子计算流程。
  • 返回值:

    返回aclnnStatus状态码,具体参见aclnn返回码

    第一段接口完成入参校验,出现以下场景时报错:

    • 返回161001(ACLNN_ERR_PARAM_NULLPTR):传入的tensor或out是空指针。
    • 返回161002(ACLNN_ERR_PARAM_INVALID):
      • self、target、weightOptional和posWeightOptional的数据类型和数据格式不在支持的范围之内。
      • self和target维度不一致。
      • weightOptional、posWeightOptional不能扩展成self、target形状。
      • reduction取值非0、1、2三值之一。

aclnnBinaryCrossEntropyWithLogits

  • 接口定义:

    aclnnstatus aclnnBinaryCrossEntropyWithLogits(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, const aclrtStream stream)

  • 参数说明:
    • workspace:在Device侧申请的workspace内存起址。
    • workspaceSize:在Device侧申请的workspace大小,由第一段接口aclnnBinaryCrossEntropyWithLogitsGetWorkspaceSize获取。
    • executor:op执行器,包含了算子计算流程。
    • stream:指定执行任务的AscendCL stream流。
  • 返回值:

    返回aclnnStatus状态码,具体参见aclnn返回码

调用示例

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_binary_cross_entropy_with_logits.h"

#define CHECK_RET(cond, return_expr) \
  do {                               \
    if (!(cond)) {                   \
      return_expr;                   \
    }                                \
  } while (0)

#define LOG_PRINT(message, ...)     \
  do {                              \
    printf(message, ##__VA_ARGS__); \
  } while (0)

int64_t GetShapeSize(const std::vector<int64_t>& shape) {
  int64_t shape_size = 1;
  for (auto i : shape) {
    shape_size *= i;
  }
  return shape_size;
}

void PrintOutResult(std::vector<int64_t> &shape, void** deviceAddr) {
  auto size = GetShapeSize(shape);
  std::vector<float> resultData(size, 0);
  auto ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]),
                         *deviceAddr, size * sizeof(float), ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return);
  for (int64_t i = 0; i < size; i++) {
    LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]);
  }
}

int Init(int32_t deviceId, aclrtContext* context, aclrtStream* stream) {
  // 固定写法,AscendCL初始化
  auto ret = aclInit(nullptr);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
  ret = aclrtSetDevice(deviceId);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
  ret = aclrtCreateContext(context, deviceId);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateContext failed. ERROR: %d\n", ret); return ret);
  ret = aclrtSetCurrentContext(*context);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetCurrentContext failed. ERROR: %d\n", ret); return ret);
  ret = aclrtCreateStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
  return 0;
}

template <typename T>
int CreateAclTensor(const std::vector<T>& hostData,
                    const std::vector<int64_t>& shape,
					void** deviceAddr,
                    aclDataType dataType,
					aclTensor** tensor) {
  auto size = GetShapeSize(shape) * sizeof(T);

  // 调用aclrtMalloc申请device侧内存
  auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);

  // 调用aclrtMemcpy将Host侧数据拷贝到device侧内存上
  ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);

  // 计算连续tensor的strides
  std::vector<int64_t> strides(shape.size(), 1);
  for (int64_t i = shape.size() - 2; i >= 0; i--) {
    strides[i] = shape[i + 1] * strides[i + 1];
  }

  // 调用aclCreateTensor接口创建aclTensor
  *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
                            shape.data(), shape.size(), *deviceAddr);
  return 0;
}

int main() {
  // 1. (固定写法)device/context/stream初始化, 参考AscendCL对外接口列表
  // 根据自己的实际device填写deviceId
  int32_t deviceId = 0;
  aclrtContext context;
  aclrtStream stream;
  auto ret = Init(deviceId, &context, &stream);
  CHECK_RET(ret == 0, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);  // check根据自己的需要处理

  // 2. 构造输入与输出,需要根据API的接口自定义构造
  std::vector<int64_t> inputShape = {4, 2};
  std::vector<int64_t> targetShape = {4, 2};
  std::vector<int64_t> weightShape = {4, 2};
  std::vector<int64_t> posWeightShape = {4, 2};
  std::vector<int64_t> outShape = {4, 2};
  void* inputDeviceAddr = nullptr;
  void* targetDeviceAddr = nullptr;
  void* weightDeviceAddr = nullptr;
  void* posWeightDeviceAddr = nullptr;
  void* outDeviceAddr = nullptr;
  aclTensor* input = nullptr;
  aclTensor* target = nullptr;
  aclTensor* weight = nullptr;
  aclTensor* posWeight = nullptr;
  aclTensor* out = nullptr;
  std::vector<float> inputHostData = {0.1, 0.1, 0.2, 0.2, 0.3, 0.3, 0.4, 0.4};
  std::vector<float> targetHostData = {0.2, 0.2, 0.1, 0.1, 0.2, 0.2, 0.1, 0.1};
  std::vector<float> weightHostData = {0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5};
  std::vector<float> posWeightHostData = {0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5};
  std::vector<float> outHostData = {0, 0, 0, 0, 0, 0, 0, 0};

  ret = CreateAclTensor(inputHostData, inputShape, &inputDeviceAddr, aclDataType::ACL_FLOAT, &input);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  ret = CreateAclTensor(targetHostData, targetShape, &targetDeviceAddr, aclDataType::ACL_FLOAT, &target);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  ret = CreateAclTensor(weightHostData, weightShape, &weightDeviceAddr, aclDataType::ACL_FLOAT, &weight);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  ret = CreateAclTensor(posWeightHostData, posWeightShape, &posWeightDeviceAddr, aclDataType::ACL_FLOAT, &posWeight);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT, &out);
  CHECK_RET(ret == ACL_SUCCESS, return ret);

  int64_t reduction = 0;

  // 3.调用CANN算子库API,需要修改为具体的算子接口
  uint64_t workspaceSize = 0;
  aclOpExecutor* executor;
  // 调用aclnnBinaryCrossEntropyWithLogitsGetWorkspaceSize第一段接口
  ret = aclnnBinaryCrossEntropyWithLogitsGetWorkspaceSize(input, target, weight, posWeight, reduction, out, &workspaceSize, &executor);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnBinaryCrossEntropyWithLogitsGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
  // 根据第一段接口计算出的workspaceSize申请device内存
  void* workspaceAddr = nullptr;
  if (workspaceSize > 0) {
    ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret;);
  }
  // 调用aclnnBinaryCrossEntropyWithLogits第二段接口
  ret = aclnnBinaryCrossEntropyWithLogits(workspaceAddr, workspaceSize, executor, stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnBinaryCrossEntropyWithLogits failed. ERROR: %d\n", ret); return ret);

  // 4. (固定写法)同步等待任务执行结束
  ret = aclrtSynchronizeStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);

  // 5. 获取输出的值,将device侧内存上的结果拷贝至Host侧,需要根据具体API的接口定义修改
  PrintOutResult(outShape, &outDeviceAddr);

  // 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
  aclDestroyTensor(input);
  aclDestroyTensor(target);
  aclDestroyTensor(weight);
  aclDestroyTensor(posWeight);
  aclDestroyTensor(out);
  return 0;
}