下载
中文
注册

aclnnConvolutionBackward

接口原型

每个算子有两段接口,必须先调用“aclnnXxxGetWorkspaceSize”接口获取入参并根据计算流程计算所需workspace大小,再调用“aclnnXxx”接口执行计算。两段式接口如下:

  • 第一段接口:aclnnStatus aclnnConvolutionBackwardGetWorkspaceSize(const aclTensor *gradOutput, const aclTensor *input, const aclTensor *weight, const aclIntArray *biasSizes, const aclIntArray *stride, const aclIntArray *padding, const aclIntArray *dilation, const bool transposed, const aclIntArray *outputPadding, const int groups, const aclBoolArray *outputMask, int8_t cubeMathType, aclTensor *gradInput, aclTensor *gradWeight, aclTensor *gradBias, uint64_t *workspaceSize, aclOpExecutor **executor)
  • 第二段接口:aclnnStatus aclnnConvolutionBackward(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, const aclrtStream stream)

功能描述

  • 算子功能:卷积函数aclnnConvolution的反向传播。根据输出掩码outputMask设置输入、权重和偏差的梯度,此函数支持1D、2D或3D卷积。
  • 计算公式:

    存在卷积正向的输入张量 x (N, Cin​, Hin​, Win​),卷积核w (Cout​, Cin​, kH​, kW​),输出张量 y 的形状为 (N, Cout​, Hout​, Wout​)

    卷积反向传播需要分别计算卷积正向输入张量x、卷积核权重张量w和偏置b的梯度,,L为损失函数。
    • 对于x的梯度:

    • 对于w的梯度 :

    • 对于b的梯度:

aclnnConvolutionBackward

  • 接口定义:

    aclnnStatus aclnnConvolutionBackwardGetWorkspaceSize(const aclTensor *gradOutput, const aclTensor *input, const aclTensor *weight, const aclIntArray *biasSizes, const aclIntArray *stride, const aclIntArray *padding, const aclIntArray *dilation, const bool transposed, const aclIntArray *outputPadding, const int groups, const aclBoolArray *outputMask, int8_t cubeMathType, aclTensor *gradInput, aclTensor *gradWeight, aclTensor *gradBias, uint64_t *workspaceSize, aclOpExecutor **executor)

  • 参数说明:
    • gradOutput:卷积输出梯度, 公式中的输入∂L​/∂y,Device侧的aclTensor。 数据类型支持FLOAT、FLOAT16,且数据类型需要与input、weight数据类型满足数据类型推导规则。shape要求和input、weight满足卷积输入输出shape的推导关系。支持非连续的Tensor,数据格式支持ND、NCL、NCHW、NCDHW。
    • input:卷积输入,公式中的输入x,Device侧的aclTensor。 数据类型支持FLOAT、FLOAT16,且数据类型需要与gradOutput、weight数据类型满足数据类型推导规则。shape要求和gradOutput、weight满足卷积输入输出shape的推导关系。支持非连续的Tensor。数据格式支持ND、NCL、NCHW、NCDHW,且数据格式需要与input、weight一致。
    • weight:卷积权重,公式中的输入w,Device侧的aclTensor。 数据类型支持FLOAT、FLOAT16,且数据类型需要与gradOutput、input数据类型满足数据类型推导规则。shape要求和gradOutput、input满足卷积输入输出shape的推导关系。支持非连续的Tensor。数据格式支持ND、NCL、NCHW、NCDHW,且数据格式需要与input、weight一致。
    • biasSizes:卷积正向过程中偏差(bias)的shape,Host侧的aclIntArray。数据类型为INT64,数组长度是1。 在普通卷积中它等于[weight.shape[0]],在转置卷积中它等于[weight.shape[1] * groups]。
    • stride:反向传播过程中卷积核在输入上移动的步长,数值必须大于0,Host侧的aclIntArray。数据类型为INT64,数组长度可为1或weight.ndimension()-2,当为1时卷积核在输入上移动的步长和D、H和W方向上一样。
    • padding:反向传播过程中对于输入填充,数值必须大于0,Host侧的aclIntArray。数据类型为INT64,数组长度可为1或weight.ndimension()-2,当为1时输入填充在D、H和W方向上一样。
    • dilation:反向传播过程中的膨胀参数,数值必须大于0,Host侧的aclIntArray。数据类型为INT64,数组长度可为1或weight.ndimension()-2,当为1时膨胀参数在D、H和W方向上一样。
    • transposed:转置卷积使能标志位,Host侧的布尔类型。当其值为True时,使能转置卷积。
    • outputPadding:反向传播过程中对于输出填充,数值必须大于0,仅在transposed为True时生效,Host侧的整形数组。数据类型支持INT32、INT64,数组长度可为1或weight.ndimension() 2,当为1时对于输出填充在D、H和W方向上一样。
    • groups:反向传播过程中输入通道的分组数。 数据类型为INT64,数值必须大于0(当前只支持group = 1的情况)
    • outputMask:输出掩码参数,指定输出中是否包含输入、权重、偏差的梯度,Host侧的aclBoolArray。反向传播过程输出掩码参数为True对应位置的梯度。
    • cubeMathType:Host侧的整型,判断Cube单元应该使用哪种计算逻辑进行运算,支持INT8类型的枚举值,枚举值如下:
      • 0:KEPP_DTYPE,保持输入的数据类型进行计算。
      • 1:ALLOW_FP32_DOWN_PRECISION,允许转换输入数据类型降低精度计算。
      • 2:USE_FP16,允许转换输入数据类型至FLOAT16计算。当输入是FLOAT,允许转换为FLOAT16计算。
      • 3:USE_HF32,允许转换输入数据类型至HFLOAT32计算。当输入是FLOAT,Atlas 训练系列产品暂不支持,取3时会报错。
    • gradInput:卷积输入梯度,公式中的输入∂L​/∂x,Device侧的aclTensor,数据类型和数据格式与input一致。
    • gradWeight:卷积权重梯度,公式中的输入∂L​/∂w,Device侧的aclTensor,数据类型和数据格式与weight一致。
    • gradBias:卷积偏置梯度,公式中的输入∂L​/∂b,Device侧的aclTensor,数据格式为ND
    • workspaceSize:返回用户需要在Device侧申请的workspace大小。
    • executor:返回op执行器, 包含了算子计算流程。
  • 返回值:

    返回aclnnStatus状态码,具体参见aclnn返回码

    第一段接口完成入参校验,出现以下场景时报错:

    • 返回161001(ACLNN_ERR_PARAM_NULLPTR):传入的指针类型入参是空指针。
    • 返回161002(ACLNN_ERR_PARAM_INVALID):
      • gradOutput、input或weight的数据类型不在支持的范围之内。
      • gradOutput、input或weight的shape不符合约束。
      • biasSizes、stride、dilation或outputPadding的shape不符合约束。
      • gradOutput、input、weight和gradInput、gradWeight、gradBias的数据类型不符合约束。
      • input传入空Tensor中为零的维度不满足要求。

aclnnConvolutionBackwardGetWorkspaceSize

  • 接口定义:

    aclnnStatus aclnnConvolutionBackward(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, const aclrtStream stream)

  • 参数说明:
    • workspace:在Device侧申请的workspace内存起址。
    • workspaceSize:在Device侧申请的workspace大小,由第一段接口aclnnConvolutionBackwardGetWorkspaceSize获取。
    • executor:op执行器,包含了算子计算流程。
    • stream:指定执行任务的AscendCL stream流。
  • 返回值:

    返回aclnnStatus状态码,具体参见aclnn返回码

调用示例

#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_convolution_backward.h"

#define CHECK_RET(cond, return_expr) \
  do {                               \
    if (!(cond)) {                   \
      return_expr;                   \
    }                                \
  } while (0)

#define LOG_PRINT(message, ...)     \
  do {                              \
    printf(message, ##__VA_ARGS__); \
  } while (0)
int64_t GetShapeSize(const std::vector<int64_t>& shape) {
  int64_t shapeSize = 1;
  for (auto i : shape) {
    shapeSize *= i;
  }
  return shapeSize;
}

int Init(int32_t deviceId, aclrtContext* context, aclrtStream* stream) {
  // 固定写法,AscendCL初始化
  auto ret = aclInit(nullptr);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
  ret = aclrtSetDevice(deviceId);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
  ret = aclrtCreateContext(context, deviceId);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateContext failed. ERROR: %d\n", ret); return ret);
  ret = aclrtSetCurrentContext(*context);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetCurrentContext failed. ERROR: %d\n", ret); return ret);
  ret = aclrtCreateStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
  return 0;
}

template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
                    aclDataType dataType, aclTensor** tensor) {
  auto size = GetShapeSize(shape) * sizeof(T);
  // 调用aclrtMalloc申请device侧内存
  auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
  // 调用aclrtMemcpy将Host侧数据拷贝到device侧内存上
  ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
  // 计算连续tensor的strides
  std::vector<int64_t> strides(shape.size(), 1);
  for (int64_t i = shape.size() - 2; i >= 0; i--) {
    strides[i] = shape[i + 1] * strides[i + 1];
  }
  // 调用aclCreateTensor接口创建aclTensor
  if (shape.size() == 4) {
    *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_NCHW,
                              shape.data(), shape.size(), *deviceAddr);
  } else {
    *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
                              shape.data(), shape.size(), *deviceAddr);   
  }
  return 0;
}

int main() {
  // 1. (固定写法)device/context/stream初始化,参考AscendCL对外接口列表
  // 根据自己的实际device填写deviceId
  int32_t deviceId = 0;
  aclrtContext context;
  aclrtStream stream;
  auto ret = Init(deviceId, &context, &stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);

  // 2. 构造输入与输出,需要根据API的接口自定义构造
  std::vector<int64_t> gradOutputShape = {2, 2, 7, 7};
  std::vector<int64_t> inputShape = {2, 2, 7, 7};
  std::vector<int64_t> weightShape = {2, 2, 1, 1};
  std::vector<int64_t> bias = {2};
  std::vector<int64_t> stride = {1, 1};
  std::vector<int64_t> padding = {0, 0};
  std::vector<int64_t> dilation = {1, 1};
  bool transposed = false;
  std::vector<int64_t> outputPadding = {0, 0};
  int groups = 1;
  bool outputMask[3] = {true, true, true};
  int8_t cubeMathType = 0;
  std::vector<int64_t> gradInputShape = {2, 2, 7, 7};
  std::vector<int64_t> gradWeightShape = {2, 2, 1, 1};
  std::vector<int64_t> gradBiasShape = {2};
  // 创建gradOut aclTensor
  std::vector<float> gradOutputData(GetShapeSize(gradOutputShape) * 2, 1);
  aclTensor* gradOutput = nullptr;
  void *gradOutputdeviceAddr = nullptr;
  ret = CreateAclTensor(gradOutputData, gradOutputShape, &gradOutputdeviceAddr, aclDataType::ACL_FLOAT16, &gradOutput);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建input aclTensor
  std::vector<float> inputData(GetShapeSize(inputShape) * 2, 1);
  aclTensor* input = nullptr;
  void *inputdeviceAddr = nullptr;
  ret = CreateAclTensor(inputData, inputShape, &inputdeviceAddr, aclDataType::ACL_FLOAT16, &input);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建weight aclTensor
  std::vector<float> weightData(GetShapeSize(weightShape) * 2, 1);
  aclTensor* weight = nullptr;
  void *weightDeviceAddr = nullptr;
  ret = CreateAclTensor(weightData, weightShape, &weightDeviceAddr, aclDataType::ACL_FLOAT16, &weight);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建gradInput aclTensor
  std::vector<float> gradInputData(GetShapeSize(gradInputShape) * 2, 1);
  aclTensor* gradInput = nullptr;
  void *gradInputDeviceAddr = nullptr;
  ret = CreateAclTensor(gradInputData, gradInputShape, &gradInputDeviceAddr, aclDataType::ACL_FLOAT16, &gradInput);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建gradWeight aclTensor
  std::vector<float> gradWeightData(GetShapeSize(gradWeightShape) * 2, 1);
  aclTensor* gradWeight = nullptr;
  void *gradWeightDeviceAddr = nullptr;
  ret = CreateAclTensor(gradWeightData, gradWeightShape, &gradWeightDeviceAddr, aclDataType::ACL_FLOAT16, &gradWeight);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建gradBias aclTensor
  std::vector<float> gradBiasData(GetShapeSize(gradBiasShape) * 2, 1);
  aclTensor* gradBias = nullptr;
  void *gradBiasDeviceAddr = nullptr;
  ret = CreateAclTensor(gradBiasData, gradBiasShape, &gradBiasDeviceAddr, aclDataType::ACL_FLOAT16, &gradBias);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  aclIntArray *biasSizes = aclCreateIntArray(bias.data(), 1);
  aclIntArray *strides = aclCreateIntArray(stride.data(), 2);
  aclIntArray *pads = aclCreateIntArray(padding.data(), 2);
  aclIntArray *dilations = aclCreateIntArray(dilation.data(), 2);
  aclIntArray *outputPads = aclCreateIntArray(outputPadding.data(), 2);
  aclBoolArray *outMask = aclCreateBoolArray(outputMask, 3);

  // 3. 调用CANN算子库API,需要修改为具体的API名称
  uint64_t workspaceSize = 0;
  aclOpExecutor* executor;
  // 调用aclnnConvolutionBackward第一段接口
  ret = aclnnConvolutionBackwardGetWorkspaceSize(gradOutput, input, weight, biasSizes, strides, pads, dilations, transposed, outputPads, groups, outMask, cubeMathType, gradInput, gradWeight, gradBias, &workspaceSize, &executor);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnConvolutionBackwardGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
  // 根据第一段接口计算出的workspaceSize申请device内存
  void* workspaceAddr = nullptr;
  if (workspaceSize > 0) {
    ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
  }
  // 调用aclnnConvolutionBackward第二段接口
  ret = aclnnConvolutionBackward(workspaceAddr, workspaceSize, executor, stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnConvolutionBackward failed. ERROR: %d\n", ret); return ret);

  // 4. (固定写法)同步等待任务执行结束
  ret = aclrtSynchronizeStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);

  // 5. 获取输出的值,将device侧内存上的结果拷贝至Host侧,需要根据具体API的接口定义修改
  auto size = GetShapeSize(gradInputShape);
  std::vector<float> gradInputResult(size, 0);
  ret = aclrtMemcpy(gradInputResult.data(), gradInputResult.size() * sizeof(gradInputResult[0]), gradInputDeviceAddr,
                    size * sizeof(gradInputResult[0]), ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
  for (int64_t i = 0; i < size; i++) {
    LOG_PRINT("gradInputResult[%ld] is: %f\n", i, gradInputResult[i]);
  }
  size = GetShapeSize(gradWeightShape);
  std::vector<float> gradWeightResult(size, 0);
  ret = aclrtMemcpy(gradWeightResult.data(), gradWeightResult.size() * sizeof(gradWeightResult[0]), gradWeightDeviceAddr,
                    size * sizeof(gradWeightResult[0]), ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
  for (int64_t i = 0; i < size; i++) {
    LOG_PRINT("gradWeightResult[%ld] is: %f\n", i, gradWeightResult[i]);
  }
  size = GetShapeSize(gradBiasShape);
  std::vector<float> gradBiasResult(size, 0);
  ret = aclrtMemcpy(gradBiasResult.data(), gradBiasResult.size() * sizeof(gradBiasResult[0]), gradInputDeviceAddr,
                    size * sizeof(gradBiasResult[0]), ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
  for (int64_t i = 0; i < size; i++) {
    LOG_PRINT("gradBiasResult[%ld] is: %f\n", i, gradBiasResult[i]);
  }

  // 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
  aclDestroyTensor(gradOutput);
  aclDestroyTensor(input);
  aclDestroyTensor(weight);
  aclDestroyTensor(gradInput);
  aclDestroyTensor(gradWeight);
  aclDestroyTensor(gradBias);
  return 0;
}