aclnnCummax
接口原型
每个算子有两段接口,必须先调用“aclnnXxxGetWorkspaceSize”接口获取入参并根据计算流程计算所需workspace大小,再调用“aclnnXxx”接口执行计算。两段式接口如下:
- 第一段接口:aclnnStatus aclnnCummaxGetWorkspaceSize(const aclTensor *self, int64_t dim, aclTensor *valuesOut, aclTensor* indicesOut, uint64_t *workspaceSize, aclOpExecutor **executor)
- 第二段接口:aclnnStatus aclnnCummax(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)
功能描述
aclnnCummaxGetWorkspaceSize
- 接口定义:
aclnnStatus aclnnCummaxGetWorkspaceSize(const aclTensor *self, int64_t dim, aclTensor *valuesOut, aclTensor* indicesOut, uint64_t *workspaceSize, aclOpExecutor **executor)
- 参数说明:
- self:Device侧的aclTensor,输入张量,数据类型支持FLOAT、FLOAT16、DOUBLE、INT32、INT64、INT16、INT8、UINT8、BOOL,支持非连续的Tensor,数据格式支持ND,且shape需要与valuesOut、indicesOut一致。
- dim:Host侧INT64类型,指定要进行最大值计算的维度,取值范围[-self.dim(), self.dim())。
- valuesOut:Device侧的aclTensor,输出的最大值,数据类型支持FLOAT、FLOAT16、DOUBLE、INT32、INT64、INT16、INT8、UINT8、BOOL,支持非连续的Tensor,数据格式支持ND,且shape需要与self、indicesOut一致。
- indicesOut:Device侧的aclTensor,输出的最大值索引,数据类型支持INT32、INT64,支持非连续的Tensor,数据格式支持ND,且shape需要与self、valuesOut一致。
- workspaceSize:返回用户需要在Device侧申请的workspace大小。
- executor:返回op执行器,包含了算子计算流程。
- 返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
第一段接口完成入参校验,出现以下场景时报错:
- 返回161001(ACLNN_ERR_PARAM_NULLPTR):传入的self、valuesOut、indicesOut是空指针。
- 返回161002(ACLNN_ERR_PARAM_INVALID):
- self、valuesOut、indicesOut的数据类型不在支持的范围之内。
- self、valuesOut、indicesOut的shape不在支持的范围之内。
- 当self为0维时,不支持传入dim。
- 输入的dim值不合法。
aclnnCummax
- 接口定义:
aclnnStatus aclnnCummax(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)
- 参数说明:
- workspace:在Device侧申请的workspace内存起址。
- workspaceSize:在Device侧申请的workspace大小,由第一段接口aclnnCummaxGetWorkspaceSize获取。
- executor:op执行器,包含了算子计算流程。
- stream:指定执行任务的AscendCL stream流。
- 返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
调用示例
#include <iostream> #include <vector> #include "acl/acl.h" #include "aclnnop/aclnn_cummax.h" #define CHECK_RET(cond, return_expr) \ do { \ if (!(cond)) { \ return_expr; \ } \ } while (0) #define LOG_PRINT(message, ...) \ do { \ printf(message, ##__VA_ARGS__); \ } while (0) int64_t GetShapeSize(const std::vector<int64_t>& shape) { int64_t shapeSize = 1; for (auto i : shape) { shapeSize *= i; } return shapeSize; } int Init(int32_t deviceId, aclrtContext* context, aclrtStream* stream) { // 固定写法,AscendCL初始化 auto ret = aclInit(nullptr); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret); ret = aclrtSetDevice(deviceId); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret); ret = aclrtCreateContext(context, deviceId); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateContext failed. ERROR: %d\n", ret); return ret); ret = aclrtSetCurrentContext(*context); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetCurrentContext failed. ERROR: %d\n", ret); return ret); ret = aclrtCreateStream(stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret); return 0; } template <typename T> int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr, aclDataType dataType, aclTensor** tensor) { auto size = GetShapeSize(shape) * sizeof(T); // 调用aclrtMalloc申请device侧内存 auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret); // 调用aclrtMemcpy将Host侧数据拷贝到device侧内存上 ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret); // 计算连续tensor的strides std::vector<int64_t> strides(shape.size(), 1); for (int64_t i = shape.size() - 2; i >= 0; i--) { strides[i] = shape[i + 1] * strides[i + 1]; } // 调用aclCreateTensor接口创建aclTensor *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND, shape.data(), shape.size(), *deviceAddr); return 0; } int main() { // 1. (固定写法)device/context/stream初始化,参考AscendCL对外接口列表 // 根据自己的实际device填写deviceId int32_t deviceId = 0; aclrtContext context; aclrtStream stream; auto ret = Init(deviceId, &context, &stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret); // 2. 构造输入与输出,需要根据API的接口自定义构造 std::vector<int64_t> selfShape = {8}; std::vector<int64_t> valuesOutShape = {8}; std::vector<int64_t> indicesOutShape = {8}; void* selfDeviceAddr = nullptr; void* valuesOutDeviceAddr = nullptr; void* indicesOutDeviceAddr = nullptr; aclTensor* self = nullptr; aclTensor* valuesOut = nullptr; aclTensor* indicesOut = nullptr; std::vector<float> selfHostData = {3.0, 3.0, 2.0, 1.0, 3.0, 2.0, 6.0, 7.0}; std::vector<float> valuesOutHostData(8, 0.0); std::vector<int64_t> indicesOutHostData(8, 0); int64_t dim = 0; // 创建self aclTensor ret = CreateAclTensor(selfHostData, selfShape, &selfDeviceAddr, aclDataType::ACL_FLOAT, &self); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建valuesOut aclTensor ret = CreateAclTensor(valuesOutHostData, valuesOutShape, &valuesOutDeviceAddr, aclDataType::ACL_FLOAT, &valuesOut); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建indicesOut aclTensor ret = CreateAclTensor(indicesOutHostData, indicesOutShape, &indicesOutDeviceAddr, aclDataType::ACL_INT64, &indicesOut); CHECK_RET(ret == ACL_SUCCESS, return ret); // 3. 调用CANN算子库API,需要修改为具体的API名称 uint64_t workspaceSize = 0; aclOpExecutor* executor; // 调用aclnnCummax第一段接口 ret = aclnnCummaxGetWorkspaceSize(self, dim, valuesOut, indicesOut, &workspaceSize, &executor); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnCummaxGetWorkspaceSize failed. ERROR: %d\n", ret); return ret); // 根据第一段接口计算出的workspaceSize申请device内存 void* workspaceAddr = nullptr; if (workspaceSize > 0) { ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret); } // 调用aclnnCummax第二段接口 ret = aclnnCummax(workspaceAddr, workspaceSize, executor, stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnCummax failed. ERROR: %d\n", ret); return ret); // 4. (固定写法)同步等待任务执行结束 ret = aclrtSynchronizeStream(stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret); // 5. 获取输出的值,将device侧内存上的结果拷贝至Host侧,需要根据具体API的接口定义修改 // 获取valuesOut auto size = GetShapeSize(valuesOutShape); std::vector<float> resultData(size, 0); ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), valuesOutDeviceAddr, size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret); for (int64_t i = 0; i < size; i++) { LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]); } // 获取indicesOut auto indicesSize = GetShapeSize(indicesOutShape); std::vector<int64_t> indicesResultData(indicesSize, 0); ret = aclrtMemcpy(indicesResultData.data(), indicesResultData.size() * sizeof(indicesResultData[0]), indicesOutDeviceAddr, indicesSize * sizeof(indicesResultData[0]), ACL_MEMCPY_DEVICE_TO_HOST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret); for (int64_t i = 0; i < indicesSize; i++) { LOG_PRINT("result[%ld] is: %ld\n", i, indicesResultData[i]); } // 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改 aclDestroyTensor(self); aclDestroyTensor(valuesOut); aclDestroyTensor(indicesOut); // 7. 释放divice 资源,需要根据具体API的接口定义修改 aclrtFree(selfDeviceAddr); aclrtFree(valuesOutDeviceAddr); aclrtFree(indicesOutDeviceAddr); if (workspaceSize > 0) { aclrtFree(workspaceAddr); } aclrtDestroyStream(stream); aclrtDestroyContext(context); aclrtResetDevice(deviceId); aclFinalize(); return 0; }
父主题: NN类算子接口