aclnnInplaceBitwiseXorTensor
接口原型
每个算子有两段接口,必须先调用“aclnnXxxGetWorkspaceSize”接口获取入参并根据计算流程计算所需workspace大小,再调用“aclnnXxx”接口执行计算。两段式接口如下:
- 第一段接口:aclnnStatus aclnnInplaceBitwiseXorTensorGetWorkspaceSize(aclTensor *selfRef, const aclTensor *other, uint64_t *workspaceSize, aclOpExecutor **executor)
- 第二段接口:aclnnStatus aclnnInplaceBitwiseXorTensor(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)
aclnnInplaceBitwiseXorTensorGetWorkspaceSize
- 接口定义:
aclnnStatus aclnnInplaceBitwiseXorTensorGetWorkspaceSize(aclTensor *selfRef, const aclTensor *other, uint64_t *workspaceSize, aclOpExecutor **executor)
- 参数说明:
- selfRef:Device侧的aclTensor,输入/输出张量,数据类型支持BOOL、INT8、INT16、INT32、INT64、UINT8,且数据类型需要与other构成互推导关系,且推导后的数据类型需要能转换成selfRef自身的数据类型,shape需要与other满足broadcast关系,且broadcast之后的shape需要与selfRef自身的shape相同。数据格式支持ND,支持非连续Tensor,数据维度不支持8维以上。
- other:Device侧的aclTensor,数据类型支持BOOL、INT8、INT16、INT32、INT64、UINT8,且数据类型需要与selfRef构成互推导关系,shape需要与selfRef满足broadcast关系,数据格式支持ND,支持非连续Tensor,数据维度不支持8维以上。
- workspaceSize:返回用户需要在Device侧申请的workspace大小。
- executor:返回op执行器,包含了算子计算流程。
- 返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
第一段接口完成入参校验,出现以下场景时报错:
- 返回161001(ACLNN_ERR_PARAM_NULLPTR):传入的selfRef、other是空指针。
- 返回161002(ACLNN_ERR_PARAM_INVALID):
- selfRef或other的数据类型不在支持范围内。
- selfRef和other不满足数据类型推导规则。
- selfRef和other推导出的数据类型不能转换为selfRef的数据类型。
- selfRef和other的shape无法做broadcast。
- selfRef的shape不是selfRef和other经过broadcast之后的shape。
- selfRef、other的维度大于8。
aclnnInplaceBitwiseXorTensor
- 接口定义:
aclnnStatus aclnnInplaceBitwiseXorTensor(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)
- 参数说明:
- workspace:在Device侧申请的workspace内存起址。
- workspaceSize:在Device侧申请的workspace大小,由第一段接口aclnnInplaceBitwiseXorTensorGetWorkspaceSize获取。
- executor:op执行器,包含了算子计算流程。
- stream:指定执行任务的AscendCL stream流。
- 返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
调用示例
#include <iostream> #include <vector> #include "acl/acl.h" #include "aclnnop/aclnn_bitwise_xor_tensor.h" #define CHECK_RET(cond, return_expr) \ do { \ if (!(cond)) { \ return_expr; \ } \ } while (0) #define LOG_PRINT(message, ...) \ do { \ printf(message, ##__VA_ARGS__); \ } while (0) int64_t GetShapeSize(const std::vector<int64_t>& shape) { int64_t shape_size = 1; for (auto i : shape) { shape_size *= i; } return shape_size; } int Init(int32_t deviceId, aclrtContext* context, aclrtStream* stream) { // 固定写法,AscendCL初始化 auto ret = aclInit(nullptr); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret); ret = aclrtSetDevice(deviceId); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret); ret = aclrtCreateContext(context, deviceId); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateContext failed. ERROR: %d\n", ret); return ret); ret = aclrtSetCurrentContext(*context); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetCurrentContext failed. ERROR: %d\n", ret); return ret); ret = aclrtCreateStream(stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret); return 0; } template <typename T> int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr, aclDataType dataType, aclTensor** tensor) { auto size = GetShapeSize(shape) * sizeof(T); // 调用aclrtMalloc申请device侧内存 auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret); // 调用aclrtMemcpy将host侧数据拷贝到device侧内存上 ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret); // 计算连续tensor的strides std::vector<int64_t> strides(shape.size(), 1); for (int64_t i = shape.size() - 2; i >= 0; i--) { strides[i] = shape[i + 1] * strides[i + 1]; } // 调用aclCreateTensor接口创建aclTensor *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND, shape.data(), shape.size(), *deviceAddr); return 0; } int main() { // 1. (固定写法)device/context/stream初始化, 参考AscendCL对外接口列表 // 根据自己的实际device填写deviceId int32_t deviceId = 0; aclrtContext context; aclrtStream stream; auto ret = Init(deviceId, &context, &stream); // check根据自己的需要处理 CHECK_RET(ret == 0, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret); // 2. 构造输入与输出,需要根据API的接口自定义构造 std::vector<int64_t> selfRefShape = {4, 2}; std::vector<int64_t> otherShape = {4, 2}; void* selfRefDeviceAddr = nullptr; void* otherDeviceAddr = nullptr; aclTensor* selfRef = nullptr; aclTensor* other = nullptr; std::vector<int32_t> selfRefHostData = {0, 1, 2, 3, 4, 5, 6, 7}; std::vector<int32_t> otherHostData = {0, 1, 1, 9, 3, 4, 5, 6}; // 创建selfRef aclTensor ret = CreateAclTensor(selfRefHostData, selfRefShape, &selfRefDeviceAddr, aclDataType::ACL_INT32, &selfRef); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建other aclTensor ret = CreateAclTensor(otherHostData, otherShape, &otherDeviceAddr, aclDataType::ACL_INT32, &other); CHECK_RET(ret == ACL_SUCCESS, return ret); // 3. 调用CANN算子库API,需要修改为具体的算子接口 uint64_t workspaceSize = 0; aclOpExecutor* executor; // 调用aclnnInplaceBitwiseXorTensor第一段接口 ret = aclnnInplaceBitwiseXorTensorGetWorkspaceSize(selfRef, other, &workspaceSize, &executor); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnInplaceBitwiseXorTensorGetWorkspaceSize failed. ERROR: %d\n", ret); return ret); // 根据第一段接口计算出的workspaceSize申请device内存 void* workspaceAddr = nullptr; if (workspaceSize > 0) { ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret;); } // 调用aclnnInplaceBitwiseXorTensor第二段接口 ret = aclnnInplaceBitwiseXorTensor(workspaceAddr, workspaceSize, executor, stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnInplaceBitwiseXorTensor failed. ERROR: %d\n", ret); return ret); // 4. (固定写法)同步等待任务执行结束 ret = aclrtSynchronizeStream(stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret); // 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改 auto size = GetShapeSize(selfRefShape); std::vector<int32_t> resultData(size, 0); ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), selfRefDeviceAddr, size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret); for (int64_t i = 0; i < size; i++) { LOG_PRINT("result[%ld] is: %d\n", i, resultData[i]); } // 6. 释放aclTensor,需要根据具体API的接口定义修改 aclDestroyTensor(selfRef); aclDestroyTensor(other); // 7. 释放device资源,需要根据具体API的接口定义修改 aclrtFree(selfRefDeviceAddr); aclrtFree(otherDeviceAddr); if (workspaceSize > 0) { aclrtFree(workspaceAddr); } aclrtDestroyStream(stream); aclrtDestroyContext(context); aclrtResetDevice(deviceId); aclFinalize(); return 0; }
父主题: NN类算子接口