下载
中文
注册

aclnnNormalTensorTensor

接口原型

每个算子有两段接口,必须先调用“aclnnXxxGetWorkspaceSize”接口获取入参并根据计算流程计算所需workspace大小,再调用“aclnnXxx”接口执行计算。两段式接口如下:

  • 第一段接口:aclnnStatus aclnnNormalTensorTensorGetWorkspaceSize(const aclTensor *mean, const aclTensor *std, int64_t seed, int64_t offset, aclTensor *out, uint64_t *workspaceSize, aclOpExecutor **executor)
  • 第二段接口:aclnnStatus aclnnNormalTensorTensor(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)

功能描述

算子功能:生成随机数张量,该随机数是从给定的均值(tensor)和标准差(tensor)的独立正态分布中获取。

aclnnNormalTensorTensorGetWorkspaceSize

  • 接口定义:

    aclnnStatus aclnnNormalTensorTensorGetWorkspaceSize(const aclTensor *mean, const aclTensor *std, int64_t seed, int64_t offset, aclTensor *out, uint64_t *workspaceSize, aclOpExecutor **executor)

  • 参数说明:
    • mean:计算输入,Device侧的aclTensor,生成随机数分布均值的张量,数据类型支持FLOAT16、FLOAT32、DOUBLE,数据格式支持ND。其中,张量中元素总数和方差元素需保持一致。
    • std:计算输入,Device侧的aclTensor,生成随机数分布方差的张量,数据类型支持FLOAT16、FLOAT32、DOUBLE,数据格式支持ND。其中,张量中元素总数和均值元素需保持一致。
    • seed:计算输入,采样伪随机数生成器的种子值,数据类型支持INT64。
    • offset:计算输入,采样伪随机数生成器的的偏移量,数据类型支持INT64。
    • out:Device侧的aclTensor,输出张量,数据类型支持FLOAT16、FLOAT32、DOUBLE,数据格式支持ND。
    • workspaceSize:返回用户需要在Device侧申请的workspace大小。
    • executor:返回op执行器,包含了算子计算流程。
  • 返回值:

    返回aclnnStatus状态码,具体参见aclnn返回码

    第一段接口完成入参校验,出现以下场景时报错:

    • 返回161001(ACLNN_ERR_PARAM_NULLPTR):传入的mean、std或out是空指针。
    • 返回161002(ACLNN_ERR_PARAM_INVALID):
      • 传入的mean和std数据类型不在支持的范围之内。
      • 推导出的数据类型无法转换为指定输出out的类型。
      • seed和offset的数据类型和取值范围不符合接口入参要求。

aclnnNormalTensorTensor

  • 接口定义:

    aclnnStatus aclnnNormalTensorTensor(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)

  • 参数说明:
    • workspace:在Device侧申请的workspace内存起址。
    • workspaceSize:在Device侧申请的workspace大小,由第一段接口aclnnNormalTensorTensorGetWorkspaceSize获取。
    • executor:op执行器,包含了算子计算流程。
    • stream:指定执行任务的AscendCL stream流。
  • 返回值:

    返回aclnnStatus状态码,具体参见aclnn返回码

调用示例

#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_normal_v2.h"

#define CHECK_RET(cond, return_expr) \
  do {                               \
    if (!(cond)) {                   \
      return_expr;                   \
    }                                \
  } while (0)

#define LOG_PRINT(message, ...)     \
  do {                              \
    printf(message, ##__VA_ARGS__); \
  } while (0)

int64_t GetShapeSize(const std::vector<int64_t>& shape) {
  int64_t shape_size = 1;
  for (auto i : shape) {
    shape_size *= i;
  }
  return shape_size;
}

int Init(int32_t deviceId, aclrtContext* context, aclrtStream* stream) {
  // 固定写法,AscendCL初始化
  auto ret = aclInit(nullptr);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
  ret = aclrtSetDevice(deviceId);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
  ret = aclrtCreateContext(context, deviceId);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateContext failed. ERROR: %d\n", ret); return ret);
  ret = aclrtSetCurrentContext(*context);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetCurrentContext failed. ERROR: %d\n", ret); return ret);
  ret = aclrtCreateStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
  return 0;
}

template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
                    aclDataType dataType, aclTensor** tensor) {
  auto size = GetShapeSize(shape) * sizeof(T);
  // 调用aclrtMalloc申请device侧内存
  auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
  // 调用aclrtMemcpy将Host侧数据拷贝到device侧内存上
  ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
  // 计算连续tensor的strides
  std::vector<int64_t> strides(shape.size(), 1);
  for (int64_t i = shape.size() - 2; i >= 0; i--) {
    strides[i] = shape[i + 1] * strides[i + 1];
  }
  // 调用aclCreateTensor接口创建aclTensor
  *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
                            shape.data(), shape.size(), *deviceAddr);
  return 0;
}

int main() {
  // 1.(固定写法)device/context/stream初始化, 参考AscendCL对外接口列表
  // 根据自己的实际device填写deviceId
  int32_t deviceId = 0;
  aclrtContext context;
  aclrtStream stream;
  auto ret = Init(deviceId, &context, &stream);
  // check根据自己的需要处理
  CHECK_RET(ret == 0, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);

  // 2. 构造输入与输出,需要根据API的接口自定义构造
  std::vector<int64_t> meanShape = {1, 4};
  std::vector<int64_t> stdShape = {1, 4};
  std::vector<int64_t> outShape = {1, 4};
  void* meanDeviceAddr = nullptr;
  void* stdDeviceAddr = nullptr;
  void* outDeviceAddr = nullptr;
  aclTensor* mean= nullptr;
  aclTensor* std= nullptr;
  aclTensor* out= nullptr;
  std::vector<float> meanHostData = {0.1, 1.1, 2.1, 3.1};
  std::vector<float> stdHostData = {1.1, 1.2, 1.3, 1.4};
  std::vector<float> outHostData = {0.0, 0.0, 0.0, 0.0};
  int64_t seed = 1;
  int64_t offset = 1;
   // 创建self aclTensor
   ret = CreateAclTensor(meanHostData , meanShape , &meanDeviceAddr , aclDataType::ACL_FLOAT, &mean);
   CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建self aclTensor
  ret = CreateAclTensor(stdHostData, stdShape, &stdDeviceAddr, aclDataType::ACL_FLOAT, &std);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建out aclTensor
  ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT, &out);
  CHECK_RET(ret == ACL_SUCCESS, return ret);

  // 3.调用CANN算子库API,需要修改为具体的算子接口
  uint64_t workspaceSize = 0;
  aclOpExecutor* executor;
  // 调用aclnnNormalTensorTensor第一段接口
  ret = aclnnNormalTensorTensorGetWorkspaceSize(mean, std, seed, offset,  out, &workspaceSize, &executor);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnNormalTensorTensorGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
  // 根据第一段接口计算出的workspaceSize申请device内存
  void* workspaceAddr = nullptr;
  if (workspaceSize > 0) {
    ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret;);
  }
  // 调用aclnnNormalTensorTensor第二段接口
  ret = aclnnNormalTensorTensor(workspaceAddr, workspaceSize, executor, stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnNormalTensorTensor failed. ERROR: %d\n", ret); return ret);

  // 4. (固定写法)同步等待任务执行结束
  ret = aclrtSynchronizeStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);

  // 5. 获取输出的值,将device侧内存上的结果拷贝至Host侧
  auto size = GetShapeSize(outShape);
  std::vector<float> resultData(size, 0);
  ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), outDeviceAddr, size * sizeof(float),
                    ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
  for (int64_t i = 0; i < size; i++) {
    LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]);
  }

  // 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
  aclDestroyTensor(mean);
  aclDestroyTensor(std);
  aclDestroyTensor(out);
  return 0;
}