下载
中文
注册

aclnnRepeat

接口原型

每个算子有两段接口,必须先调用“aclnnXxxGetWorkspaceSize”接口获取入参并根据计算流程计算所需workspace大小,再调用“aclnnXxx”接口执行计算。两段式接口如下:

  • 第一段接口:aclnnStatus aclnnRepeatGetWorkspaceSize(const aclTensor *self, const aclIntArray *repeats, aclTensor *out, uint64_t *workspaceSize, aclOpExecutor **executor)
  • 第二段接口:aclnnStatus aclnnRepeat(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)

功能描述

  • 算子功能:对输入张量沿着repeats中对每个维度指定的复制次数进行复制。
  • 示例:

    假设输入张量self为([[a, b], [c, d], [e, f]]),shape为[3, 2],repeats为(2, 4),生成的张量shape为[6, 8],值如下所示:

    tensor([[ a, b, a, b, a, b, a, b ],
            [ c, d, c, d, c, d, c, d ],
            [ e, f, e, f, e, f, e, f ],
            [ a, b, a, b, a, b, a, b ],
            [ c, d, c, d, c, d, c, d ],
            [ e, f, e, f, e, f, e, f ]])

    当repeats为(2, 4, 2)时,即repeats的元素个数大于self维度,则输出out等效为如下操作:

    1. 先将输入tensor的shape进行扩张到和repeats个数相同的维度:[1, 3, 2]
    2. 按照对应维度和repeats的值进行扩张,输出tensor的shape为[2, 12, 4]

    结果如下:

    tensor([[[a, b, a, b],
             [c, d, c, d],
             [e, f, e, f],
             [a, b, a, b],
             [c, d, c, d],
             [e, f, e, f],
             [a, b, a, b],
             [c, d, c, d],
             [e, f, e, f],
             [a, b, a, b],
             [c, d, c, d],
             [e, f, e, f]],
            [[a, b, a, b],
             [c, d, c, d],
             [e, f, e, f],
             [a, b, a, b],
             [c, d, c, d],
             [e, f, e, f],
             [a, b, a, b],
             [c, d, c, d],
             [e, f, e, f],
             [a, b, a, b],
             [c, d, c, d],
             [e, f, e, f]]])

aclnnRepeatGetWorkspaceSize

  • 接口定义:

    aclnnStatus aclnnRepeatGetWorkspaceSize(const aclTensor *self, const aclIntArray *repeats, aclTensor *out, uint64_t *workspaceSize, aclOpExecutor **executor)

  • 参数说明:
    • self:Device侧的aclTensor,输入张量,数据类型支持FLOAT、DOUBLE、FLOAT16、COMPLEX64、COMPLEX128、UINT8、INT8、INT16、INT32、INT64、BOOL,支持非连续的Tensor,数据格式支持ND,维度不大于8。
    • repeats:Host侧的aclIntArray,表示沿每个维度重复输入tensor的次数,参数个数不大于8。数据类型支持INT64。
    • out:Device侧的aclTensor,数据类型支持FLOAT、DOUBLE、FLOAT16、COMPLEX64、COMPLEX128、UINT8、INT8、INT16、INT32、INT64、BOOL,数据类型需要与self一致。支持非连续的Tensor,数据格式支持ND,维度不大于8。
    • workspaceSize:返回用户需要在Device侧申请的workspace大小。
    • executor:返回op执行器,包含了算子计算流程。
  • 返回值:

    返回aclnnStatus状态码,具体参见aclnn返回码

    第一段接口完成入参校验,出现以下场景时报错:

    • 返回161001(ACLNN_ERR_PARAM_NULLPTR):传入的self或out是空指针。
    • 返回161002(ACLNN_ERR_PARAM_INVALID):
      • self和out的数据类型和数据格式不在支持的范围之内。
      • self和out的数据类型不匹配。
      • repeats的参数个数小于self的维度。
      • repeats中含有小于0的值。
      • self的维度数超过8。
      • repeats的参数个数超过8。

aclnnRepeat

  • 接口定义:

    aclnnStatus aclnnRepeat(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)

  • 参数说明:
    • workspace:在Device侧申请的workspace内存起址。
    • workspaceSize:在Device侧申请的workspace大小,由第一段接口aclnnRepeatGetWorkspaceSize获取。
    • executor:op执行器,包含了算子计算流程。
    • stream:指定执行任务的AscendCL stream流。
  • 返回值:

    返回aclnnStatus状态码,具体参见aclnn返回码

调用示例

#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_repeat.h"

#define CHECK_RET(cond, return_expr) \
  do {                               \
    if (!(cond)) {                   \
      return_expr;                   \
    }                                \
  } while (0)

#define LOG_PRINT(message, ...)     \
  do {                              \
    printf(message, ##__VA_ARGS__); \
  } while (0)

int64_t GetShapeSize(const std::vector<int64_t>& shape) {
  int64_t shape_size = 1;
  for (auto i : shape) {
    shape_size *= i;
  }
  return shape_size;
}

int Init(int32_t deviceId, aclrtContext* context, aclrtStream* stream) {
  // 固定写法,AscendCL初始化
  auto ret = aclInit(nullptr);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
  ret = aclrtSetDevice(deviceId);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
  ret = aclrtCreateContext(context, deviceId);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateContext failed. ERROR: %d\n", ret); return ret);
  ret = aclrtSetCurrentContext(*context);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetCurrentContext failed. ERROR: %d\n", ret); return ret);
  ret = aclrtCreateStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
  return 0;
}

template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
                    aclDataType dataType, aclTensor** tensor) {
  auto size = GetShapeSize(shape) * sizeof(T);
  // 调用aclrtMalloc申请device侧内存
  auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);

  // 调用aclrtMemcpy将Host侧数据拷贝到device侧内存上
  ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);

  // 计算连续tensor的strides
  std::vector<int64_t> strides(shape.size(), 1);
  for (int64_t i = shape.size() - 2; i >= 0; i--) {
    strides[i] = shape[i + 1] * strides[i + 1];
  }

  // 调用aclCreateTensor接口创建aclTensor
  *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
                            shape.data(), shape.size(), *deviceAddr);
  return 0;
}

int main() {
  // 1. (固定写法)device/context/stream初始化, 参考AscendCL对外接口列表
  // 根据自己的实际device填写deviceId
  int32_t deviceId = 0;
  aclrtContext context;
  aclrtStream stream;
  auto ret = Init(deviceId, &context, &stream);
  // check根据自己的需要处理
  CHECK_RET(ret == 0, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);

  // 2. 构造输入与输出,需要根据API的接口自定义构造
  std::vector<int64_t> selfShape = {3, 2};
  std::vector<int64_t> outShape = {2, 12, 4};
  std::vector<int64_t> repeatsArray;
  void* selfDeviceAddr = nullptr;
  void* outDeviceAddr = nullptr;
  aclTensor* self = nullptr;
  aclTensor* out = nullptr;
  std::vector<float> selfHostData = (GetShapeSize(selfShape ) * 2, 1);
  std::vector<float> outHostData = (GetShapeSize(outShape ) * 2, 1);
  repeatsArray = {2, 4, 2};
  // 创建self aclTensor
  ret = CreateAclTensor(selfHostData, selfShape, &selfDeviceAddr, aclDataType::ACL_FLOAT, &self);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建out aclTensor
  ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT, &out);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  aclIntArray *repeats = AclCreateIntArray(repeatsArray.data(), 2);

  // 3.调用CANN算子库API,需要修改为具体的算子接口
  uint64_t workspaceSize = 0;
  aclOpExecutor* executor;
  // 调用aclnnRepeat第一段接口
  ret = aclnnRepeatGetWorkspaceSize(self, repeats, out, &workspaceSize, &executor);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnRepeatGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
  // 根据第一段接口计算出的workspaceSize申请device内存
  void* workspaceAddr = nullptr;
  if (workspaceSize > 0) {
    ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret;);
  }
  // 调用aclnnRepeat第二段接口
  ret = aclnnRepeat(workspaceAddr, workspaceSize, executor, stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnRepeat failed. ERROR: %d\n", ret); return ret);

  // 4. (固定写法)同步等待任务执行结束
  ret = aclrtSynchronizeStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);

  // 5. 获取输出的值,将device侧内存上的结果拷贝至Host侧,需要根据具体API的接口定义修改
  auto size = GetShapeSize(outShape);
  std::vector<float> resultData(size, 0);
  ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), outDeviceAddr, size * sizeof(float),
                    ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
  for (int64_t i = 0; i < size; i++) {
    LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]);
  }

  // 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
  aclDestroyTensor(self);
  aclDestroyTensor(out);
  aclDestroyIntArray(repeats);
  return 0;
}