下载
中文
注册

aclnnRepeatInterleave

接口原型

每个算子有两段接口,必须先调用“aclnnXxxGetWorkspaceSize”接口获取入参并根据计算流程计算所需workspace大小,再调用“aclnnXxx”接口执行计算。两段式接口如下:

  • 第一段接口:aclnnStatus aclnnRepeatInterleaveGetWorkspaceSize(const aclTensor *self, const aclTensor *repeats, int64_t outputSize, aclTensor *out, uint64_t *workspaceSize, aclOpExecutor **executor)
  • 第二段接口:aclnnStatus aclnnRepeatInterleave(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, const aclrtStream stream)

功能描述

  • 算子功能:对输入张量self进行flatten后,重复repeats中的相应次数。
  • 示例:
    • 样例1:假设输入张量self是 ([[a, b], [c, d], [e, f]]),repeats为([1, 2, 2, 1, 1, 1]),生成的张量out为([a, b, b, c, c, d, e, f])。换言之,将self进行flatten后变为 ([a, b, c, d, e, f]),根据repeats一一对应复制,a重复1次、b重复2次、c重复2次,以此类推。
    • 样例2:假设输入张量self是 ([[a, b], [c, d], [e, f]]),repeats为([2]),生成的张量out为([a, a, b, b, c, c, d, d, e, e, f, f])。换言之,将self进行flatten后变为 ([a, b, c, d, e, f]),将该张量中的每个元素复制repeats中的元素次数,也就是每个元素复制2次。

aclnnRepeatInterleaveGetWorkspaceSize

  • 接口定义:

    aclnnStatus aclnnRepeatInterleaveGetWorkspaceSize(const aclTensor *self, const aclTensor *repeats, int64_t outputSize, aclTensor *out, uint64_t *workspaceSize, aclOpExecutor **executor)

  • 参数说明:
    • self:Device侧的aclTensor,数据类型支持UINT8、INT8、INT16、INT32、INT64、BOOL、FLOAT16、FLOAT32。支持空Tensor,支持非连续的Tensor,数据格式支持ND。
    • repeats:Device侧的aclTensor。数据类型支持INT64。repeats只能为0D/1D Tensor。如果为1D Tensor,那么repeats的size必须为1或self的元素个数。支持空Tensor,支持非连续的Tensor,数据格式支持ND。
    • outputSize:进行重复后的张量最终大小。数据类型为INT64。当repeats中只有一个元素时,outputSize=self的元素个数*repeats的值。当repeats中有多个值时,outputSize=repeats的值之和。
    • out:Device侧的aclTensor,数据类型支持UINT8、INT8、INT16、INT32、INT64、BOOL、FLOAT16、FLOAT32,且数据类型需要与self一致。
    • workspaceSize:返回用户需要在Device侧申请的workspace大小。
    • executor:返回op执行器,包含了算子计算流程。
  • 返回值:

    返回aclnnStatus状态码,具体参见aclnn返回码

    第一段接口完成入参校验,出现以下场景时报错:

    • 返回161001(ACLNN_ERR_PARAM_NULLPTR):传入的self、repeats或out是空指针。
    • 返回161002(ACLNN_ERR_PARAM_INVALID):
      • self、repeats的数据类型不在支持范围内。
      • self、out的数据类型不一样。
      • repeats不为0D/1D Tensor。
      • 当repeats为1D Tensor,repeats的size不为1,也不为self的元素个数。
      • self的维度数超过8。
      • 当self为空Tensor时,repeats不为空Tensor,不为0维1元素,不为1维1元素。

aclnnRepeatInterleave

  • 接口定义:

    aclnnStatus aclnnRepeatInterleave(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, const aclrtStream stream)

  • 参数说明:
    • workspace:在Device侧申请的workspace内存起址。
    • workspaceSize:在Device侧申请的workspace大小,由第一段接口aclnnRepeatInterleaveGetWorkspaceSize获取。
    • executor:op执行器,包含了算子计算流程。
    • stream:指定执行任务的AscendCL stream流。
  • 返回值:

    返回aclnnStatus状态码,具体参见aclnn返回码

调用示例

#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_repeat_interleave.h"

#define CHECK_RET(cond, return_expr) \
  do {                               \
    if (!(cond)) {                   \
      return_expr;                   \
    }                                \
  } while (0)

#define LOG_PRINT(message, ...)     \
  do {                              \
    printf(message, ##__VA_ARGS__); \
  } while (0)

int64_t GetShapeSize(const std::vector<int64_t>& shape) {
  int64_t shapeSize = 1;
  for (auto i : shape) {
    shapeSize *= i;
  }
  return shapeSize;
}

int Init(int32_t deviceId, aclrtContext* context, aclrtStream* stream) {
  // 固定写法,AscendCL初始化
  auto ret = aclInit(nullptr);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
  ret = aclrtSetDevice(deviceId);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
  ret = aclrtCreateContext(context, deviceId);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateContext failed. ERROR: %d\n", ret); return ret);
  ret = aclrtSetCurrentContext(*context);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetCurrentContext failed. ERROR: %d\n", ret); return ret);
  ret = aclrtCreateStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
  return 0;
}

template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
                    aclDataType dataType, aclTensor** tensor) {
  auto size = GetShapeSize(shape) * sizeof(T);
  // 调用aclrtMalloc申请device侧内存
  auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
  // 调用aclrtMemcpy将Host侧数据拷贝到device侧内存上
  ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);

  // 计算连续tensor的strides
  std::vector<int64_t> strides(shape.size(), 1);
  for (int64_t i = shape.size() - 2; i >= 0; i--) {
    strides[i] = shape[i + 1] * strides[i + 1];
  }

  // 调用aclCreateTensor接口创建aclTensor
  *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
                            shape.data(), shape.size(), *deviceAddr);
  return 0;
}

int main() {
  // 1. (固定写法)device/context/stream初始化,参考AscendCL对外接口列表
  // 根据自己的实际device填写deviceId
  int32_t deviceId = 0;
  aclrtContext context;
  aclrtStream stream;
  auto ret = Init(deviceId, &context, &stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);

  // 2. 构造输入与输出,需要根据API的接口自定义构造
  std::vector<int64_t> selfShape = {2, 3};
  std::vector<int64_t> repeatsShape = {6};
  std::vector<int64_t> outShape = {21};
  void* selfDeviceAddr = nullptr;
  void* repeatsDeviceAddr = nullptr;
  void* outDeviceAddr = nullptr;
  aclTensor* self = nullptr;
  aclTensor* repeats = nullptr;
  aclTensor* out = nullptr;
  int64_t output_size = 21;
  std::vector<float> selfHostData = {3, 4, 5, -3, -4, -5};
  std::vector<int64_t> repeatsHostData = {1, 2, 3, 4, 5, 6};
  std::vector<float> outHostData = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
  // 创建self aclTensor
  ret = CreateAclTensor(selfHostData, selfShape, &selfDeviceAddr, aclDataType::ACL_FLOAT, &self);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建repeats aclTensor
  ret = CreateAclTensor(repeatsHostData, repeatsShape, &repeatsDeviceAddr, aclDataType::ACL_INT64, &repeats);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建out aclTensor
  ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT, &out);
  CHECK_RET(ret == ACL_SUCCESS, return ret);

  // 3. 调用CANN算子库API,需要修改为具体的API名称
  uint64_t workspaceSize = 0;
  aclOpExecutor* executor;
  // 调用aclnnRepeatInterleave第一段接口
  ret = aclnnRepeatInterleaveGetWorkspaceSize(self, repeats, output_size, out, &workspaceSize, &executor);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnRepeatInterleaveGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
  // 根据第一段接口计算出的workspaceSize申请device内存
  void* workspaceAddr = nullptr;
  if (workspaceSize > 0) {
    ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
  }
  // 调用aclnnRepeatInterleave第二段接口
  ret = aclnnRepeatInterleave(workspaceAddr, workspaceSize, executor, stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnRepeatInterleave failed. ERROR: %d\n", ret); return ret);

  // 4. (固定写法)同步等待任务执行结束
  ret = aclrtSynchronizeStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);

  // 5. 获取输出的值,将device侧内存上的结果拷贝至Host侧,需要根据具体API的接口定义修改
  auto size = GetShapeSize(outShape);
  std::vector<float> resultData(size, 0);
  ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), outDeviceAddr,
                    size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
  for (int64_t i = 0; i < size; i++) {
    LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]);
  }

  // 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
  aclDestroyTensor(self);
  aclDestroyTensor(repeats);
  aclDestroyTensor(out);
  return 0;
}