aclnnSplitWithSize
接口原型
每个算子有两段接口,必须先调用“aclnnXxxGetWorkspaceSize”接口获取入参并根据计算流程计算所需workspace大小,再调用“aclnnXxx”接口执行计算。两段式接口如下:
- 第一段接口:aclnnStatus aclnnSplitWithSizeGetWorkspaceSize(const aclTensor *self, const aclIntArray *splitSize, int64_t dim, aclTensorList *out, uint64_t *workspaceSize, aclOpExecutor **executor)
- 第二段接口:aclnnStatus aclnnSplitWithSize(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)
功能描述
算子功能:对张量self沿指定轴dim切分至splitSize中每个元素的大小。
aclnnSplitWithSizeGetWorkspaceSize
- 接口定义:
aclnnStatus aclnnSplitWithSizeGetWorkspaceSize(const aclTensor *self, const aclIntArray *splitSize, int64_t dim, aclTensorList *out, uint64_t *workspaceSize, aclOpExecutor **executor)
- 参数说明:
- self:Device侧的aclTensor,表示输入的张量。数据类型支持FLOAT、FLOAT16、DOUBLE、BFLOAT16(仅Atlas A2训练系列产品支持)、INT32、INT64、INT16、INT8、UINT8、BOOL、COMPLEX128和COMPLEX64,支持非连续的Tensor,数据格式支持ND。
- splitSize:Host侧的aclIntArray,表示需要split的各块大小,数据类型支持INT32、INT64。所有块的大小总和需要等于self在dim维度上的shape大小。
- dim:Host侧的整型,数据类型类型支持INT64,表示split的维度,取值范围是[-self.dim(), self.dim())。
- out:Device侧的aclTensorList,表示拆分后的张量列表。数据类型支持FLOAT、FLOAT16、DOUBLE、BFLOAT16(仅Atlas A2训练系列产品支持)、INT32、INT64、INT16、INT8、UINT8、BOOL、COMPLEX128和COMPLEX64,支持非连续的Tensor,数据格式支持ND。
- workspaceSize:返回用户需要在Device侧申请的workspace大小。
- executor:返回op执行器,包含了算子计算流程。
- 返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
第一段接口完成入参校验,出现以下场景时报错:
- 返回161001(ACLNN_ERR_PARAM_NULLPTR):传入的self、splitSize、out是空指针。
- 返回161002(ACLNN_ERR_PARAM_INVALID):
- self和out的数据类型不在支持的范围内。
- self的长度不在支持的范围内。
- out中的tensor长度不在支持的范围之内。
- dim的取值不在支持的范围内。
- splitSize中各元素之和不等于被split维度的shape大小。
aclnnSplitWithSize
- 接口定义:
aclnnStatus aclnnSplitWithSize(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)
- 参数说明:
- workspace:在Device侧申请的workspace内存起址。
- workspaceSize:在Device侧申请的workspace大小,由第一段接口aclnnSplitWithSizeGetWorkspaceSize获取。
- executor:op执行器,包含了算子计算流程。
- stream:指定执行任务的AscendCL stream流。
- 返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
调用示例
#include <algorithm> #include <iostream> #include <vector> #include "acl/acl.h" #include "aclnnop/aclnn_split_with_size.h" #define CHECK_RET(cond, return_expr) \ do { \ if (!(cond)) { \ return_expr; \ } \ } while (0) #define LOG_PRINT(message, ...) \ do { \ printf(message, ##__VA_ARGS__); \ } while (0) int64_t GetShapeSize(const std::vector<int64_t>& shape) { int64_t shapeSize = 1; for (auto i : shape) { shapeSize *= i; } return shapeSize; } int Init(int32_t deviceId, aclrtContext* context, aclrtStream* stream) { // 固定写法,AscendCL初始化 auto ret = aclInit(nullptr); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret); ret = aclrtSetDevice(deviceId); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret); ret = aclrtCreateContext(context, deviceId); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateContext failed. ERROR: %d\n", ret); return ret); ret = aclrtSetCurrentContext(*context); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetCurrentContext failed. ERROR: %d\n", ret); return ret); ret = aclrtCreateStream(stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret); return 0; } template <typename T> int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr, aclDataType dataType, aclTensor** tensor) { auto size = GetShapeSize(shape) * sizeof(T); // 调用aclrtMalloc申请device侧内存 auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret); // 调用aclrtMemcpy将Host侧数据拷贝到device侧内存上 ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret); // 计算连续tensor的strides std::vector<int64_t> strides(shape.size(), 1); for (int64_t i = shape.size() - 2; i >= 0; i--) { strides[i] = shape[i + 1] * strides[i + 1]; } // 调用aclCreateTensor接口创建aclTensor *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND, shape.data(), shape.size(), *deviceAddr); return 0; } void CheckResult(const std::vector<std::vector<int64_t>> &shapeList, const std::vector<void *> addrList) { for (size_t i = 0; i < shapeList.size(); i++) { auto size = GetShapeSize(shapeList[i]); std::vector<float> resultData(size, 0); auto ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), addrList[i], size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return); for (int64_t j = 0; j < size; j++) { LOG_PRINT("result[%ld] is: %f\n", j, resultData[j]); } } } int main() { // 1.(固定写法)device/context/stream初始化,参考AscendCL对外接口列表 // 根据自己的实际device填写deviceId int32_t deviceId = 0; aclrtContext context; aclrtStream stream; auto ret = Init(deviceId, &context, &stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret); // 2. 构造输入与输出,需要根据API的接口自定义构造 std::vector<int64_t> selfShape = {5, 2}; std::vector<int64_t> shape1 = {1, 2}; std::vector<int64_t> shape2 = {4, 2}; int64_t splitValue[] = {1, 4}; int64_t dim = 0; void* selfDeviceAddr = nullptr; void* shape1DeviceAddr = nullptr; void* shape2DeviceAddr = nullptr; aclTensor* self = nullptr; aclTensor* shape1Addr = nullptr; aclTensor* shape2Addr = nullptr; aclIntArray *splitSize = nullptr; std::vector<float> selfHostData = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}; std::vector<float> shape1HostData = {0, 5}; std::vector<float> shape2HostData = {1, 2, 3, 4, 6, 7, 8, 9}; // 创建self aclTensor ret = CreateAclTensor(selfHostData, selfShape, &selfDeviceAddr, aclDataType::ACL_FLOAT, &self); CHECK_RET(ret == ACL_SUCCESS, return ret); ret = CreateAclTensor(shape1HostData, shape1, &shape1DeviceAddr, aclDataType::ACL_FLOAT, &shape1Addr); CHECK_RET(ret == ACL_SUCCESS, return ret); ret = CreateAclTensor(shape2HostData, shape2, &shape2DeviceAddr, aclDataType::ACL_FLOAT, &shape2Addr); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建self aclTensor ret = CreateAclTensor(selfHostData, selfShape, &selfDeviceAddr, aclDataType::ACL_FLOAT, &self); CHECK_RET(ret == ACL_SUCCESS, return ret); splitSize = aclCreateIntArray(splitValue, 2); CHECK_RET(splitSize != nullptr, return ret); ret = CreateAclTensor(shape1HostData, shape1, &shape1DeviceAddr, aclDataType::ACL_FLOAT, &shape1Addr); CHECK_RET(ret == ACL_SUCCESS, return ret); ret = CreateAclTensor(shape2HostData, shape2, &shape2DeviceAddr, aclDataType::ACL_FLOAT, &shape2Addr); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建out aclTensorList std::vector<aclTensor*> tmp = {shape1Addr, shape2Addr}; aclTensorList* out = aclCreateTensorList(tmp.data(), tmp.size()); CHECK_RET(out != nullptr, return ret); // 3. 调用CANN算子库API,需要修改为具体的API名称 uint64_t workspaceSize = 0; aclOpExecutor *executor; // 调用aclnnSplitWithSize第一段接口 ret = aclnnSplitWithSizeGetWorkspaceSize(self, splitSize, dim, out, &workspaceSize, &executor); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnSplitWithSizeGetWorkspaceSize failed. ERROR: %d\n", ret); return ret); // 根据第一段接口计算出的workspaceSize申请device内存 void *workspaceAddr = nullptr; if (workspaceSize > 0) { auto ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret); } // 调用aclnnSplitWithSize第二段接口 ret = aclnnSplitWithSize(workspaceAddr, workspaceSize, executor, stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnSplitWithSize failed. ERROR: %d\n", ret); return ret); // 4. (固定写法)同步等待任务执行结束 ret = aclrtSynchronizeStream(stream); // 5. 获取输出的值,将device侧内存上的结果拷贝至Host侧,需要根据具体API的接口定义修改 CheckResult({shape1, shape2}, {shape1DeviceAddr, shape2DeviceAddr}); // 6. 释放申请的变量,需要根据具体API的接口定义修改 aclDestroyTensor(self); aclDestroyIntArray(splitSize); aclDestroyTensorList(out); return 0; }
父主题: NN类算子接口