下载
EN
注册
我要评分
文档获取效率
文档正确性
内容完整性
文档易理解
在线提单
论坛求助
昇腾小AI

WholeReduceSum

函数功能

每个repeat内所有数据求和。归约指令的总体介绍请参考归约指令

函数原型

  • mask逐bit模式
    1
    2
    template <typename T, bool isSetMask = true>
    __aicore__ inline void WholeReduceSum(const LocalTensor<T>& dstLocal, const LocalTensor<T>& srcLocal,const uint64_t mask[], const int32_t repeatTimes, const int32_t dstRepStride, const int32_t srcBlkStride, const int32_t srcRepStride)
    
  • mask连续模式
    1
    2
    template <typename T, bool isSetMask = true>
    __aicore__ inline void WholeReduceSum(const LocalTensor<T>& dstLocal, const LocalTensor<T>& srcLocal, const int32_t mask, const int32_t repeatTimes, const int32_t dstRepStride, const int32_t srcBlkStride, const int32_t srcRepStride)
    

参数说明

表1 模板参数说明

参数名

描述

T

操作数数据类型。

isSetMask

是否在接口内部设置mask。

  • true,表示在接口内部设置mask。
  • false,表示在接口外部设置mask,开发者需要使用SetVectorMask接口设置mask值。这种模式下,本接口入参中的mask值必须设置为MASK_PLACEHOLDER。
表2 参数说明

参数名称

输入/输出

含义

dstLocal

输出

目的操作数。

类型为LocalTensor,支持的TPosition为VECIN/VECCALC/VECOUT。

LocalTensor的起始地址需要保证2字节对齐(针对half数据类型),4字节对齐(针对float数据类型)。

Atlas 训练系列产品,支持的数据类型为:half/float

Atlas推理系列产品AI Core,支持的数据类型为:half/float

Atlas A2训练系列产品/Atlas 800I A2推理产品,支持的数据类型为:half/float

Atlas 200/500 A2推理产品,支持的数据类型为:half/float

srcLocal

输入

源操作数。

类型为LocalTensor,支持的TPosition为VECIN/VECCALC/VECOUT。

LocalTensor的起始地址需要32字节对齐。

源操作数的数据类型需要与目的操作数保持一致。

Atlas 训练系列产品,支持的数据类型为:支持数据类型half/float

Atlas推理系列产品AI Core,支持的数据类型为:half/float

Atlas A2训练系列产品/Atlas 800I A2推理产品,支持的数据类型为:half/float

Atlas 200/500 A2推理产品,支持的数据类型为:half/float

mask

输入

mask用于控制每次迭代内参与计算的元素。

  • 连续模式:表示前面连续的多少个元素参与计算。取值范围和操作数的数据类型有关,数据类型不同,每次迭代内能够处理的元素个数最大值不同。当操作数为16位时,mask∈[1, 128];当操作数为32位时,mask∈[1, 64];当操作数为64位时,mask∈[1, 32]。
  • 逐bit模式:可以按位控制哪些元素参与计算,bit位的值为1表示参与计算,0表示不参与。参数类型为长度为2的uint64_t类型数组。

    例如,mask=[8, 0],8=0b1000,表示仅第4个元素参与计算。

    参数取值范围和操作数的数据类型有关,数据类型不同,每次迭代内能够处理的元素个数最大值不同。当操作数为16位时,mask[0]、mask[1]∈[0, 264-1]并且不同时为0;当操作数为32位时,mask[1]为0,mask[0]∈(0, 264-1];当操作数为64位时,mask[1]为0,mask[0]∈(0, 232-1]。

repeatTimes

输入

迭代次数。取值范围为[0, 255]。

关于该参数的具体描述请参考通用参数说明

dstRepStride

输入

目的操作数相邻迭代间的地址步长。以一个repeat归约后的长度为单位。

单位为dstLocal数据类型所占字节长度。比如当dstLocal为half时,单位为2Bytes。

注意,此参数值Atlas 训练系列产品不支持配置0。

srcBlkStride

输入

单次迭代内datablock的地址步长。详细说明请参考dataBlockStride(同一迭代内不同datablock的地址步长)

srcRepStride

输入

源操作数相邻迭代间的地址步长,即源操作数每次迭代跳过的datablock数目。详细说明请参考repeatStride(相邻迭代间相同datablock的地址步长)

返回值

支持的型号

Atlas 训练系列产品

Atlas推理系列产品AI Core

Atlas A2训练系列产品/Atlas 800I A2推理产品

Atlas 200/500 A2推理产品

约束说明

  • srcLocal和dstLocal地址对齐要求请见 :通用约束
  • 为节省地址空间,开发者可以定义一个Tensor,供源操作数与目的操作数同时使用(即地址重叠),相关约束如下:
    • 对于单次repeat(repeatTimes=1),且源操作数与目的操作数之间要求100%完全重叠,不支持部分重叠。
    • 对于多次repeat(repeatTimes>1),操作数与目的操作数之间存在依赖的情况下,即第N次迭代的目的操作数是第N+1次的源操作数,不支持地址重叠。
  • 对于WholeReduceSum,其内部的相加方式采用二叉树方式,两两相加:

    假设源操作数为128个float16的数据[data0,data1,data2...data127],一个repeat可以计算完,计算过程如下。

    1. data0和data1相加得到data00,data2和data3相加得到data01...data124和data125相加得到data62,data126和data127相加得到data63;
    2. data00和data01相加得到data000,data02和data03相加得到data001...data62和data63相加得到data031;
    3. 以此类推,得到目的操作数为1个float16的数据[data]。

    需要注意的是两两相加的计算过程中,计算结果大于65504时结果保存为65504。例如源操作数为[60000,60000,-30000,100],首先60000+60000溢出,结果为65504,第二步计算-30000+100=-29900,第四步计算65504-29900=35604。

调用示例

  • tensor高维切分计算样例-mask连续模式
    1
    2
    3
    // dstLocal,srcLocal均为half类型,srcLocal的计算数据量为512,连续排布,计算结果也需要连续排布,使用tensor高维切分计算接口,设定mask为最多的128个全部元素参与计算
    // 根据以上信息,推断出repeatTimes为4,dstRepStride为1,srcBlkStride为1,srcRepStride为8
    AscendC::WholeReduceSum<half>(dstLocal, srcLocal, 128, 4, 1, 1, 8); 
    
  • 针对不同场景合理使用归约指令可以带来性能提升,相关介绍请参考针对不同场景合理使用归约指令,具体样例请参考ReduceCustom
  • 完整样例
     1
     2
     3
     4
     5
     6
     7
     8
     9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    #include "kernel_operator.h"
    class KernelReduce {
    public:
        __aicore__ inline KernelReduce() {}
        __aicore__ inline void Init(__gm__ uint8_t* src, __gm__ uint8_t* dstGm)
        {
            srcGlobal.SetGlobalBuffer((__gm__ half*)src);
            dstGlobal.SetGlobalBuffer((__gm__ half*)dstGm);
            repeat = srcDataSize / mask;
            pipe.InitBuffer(inQueueSrc, 1, srcDataSize * sizeof(half));
            pipe.InitBuffer(outQueueDst, 1, dstDataSize * sizeof(half));
        }
        __aicore__ inline void Process()
        {
            CopyIn();
            Compute();
            CopyOut();
        }
    private:
        __aicore__ inline void CopyIn()
        {
            AscendC::LocalTensor<half> srcLocal = inQueueSrc.AllocTensor<half>();
            AscendC::DataCopy(srcLocal, srcGlobal, srcDataSize);
            inQueueSrc.EnQue(srcLocal);
        }
        __aicore__ inline void Compute()
        {
            AscendC::LocalTensor<half> srcLocal = inQueueSrc.DeQue<half>();
            AscendC::LocalTensor<half> dstLocal = outQueueDst.AllocTensor<half>();
            AscendC::WholeReduceSum<half>(dstLocal, srcLocal, mask, repeat, 1, 1, 8);
            outQueueDst.EnQue<half>(dstLocal);
            inQueueSrc.FreeTensor(srcLocal);
        }
        __aicore__ inline void CopyOut()
        {
            AscendC::LocalTensor<half> dstLocal = outQueueDst.DeQue<half>();
            AscendC::DataCopy(dstGlobal, dstLocal, dstDataSize);
            outQueueDst.FreeTensor(dstLocal);
        }
    private:
        AscendC::TPipe pipe;
        AscendC::TQue<AscendC::QuePosition::VECIN, 1> inQueueSrc;
        AscendC::TQue<AscendC::QuePosition::VECOUT, 1> outQueueDst;
        AscendC::GlobalTensor<half> srcGlobal, dstGlobal;
        int srcDataSize = 2048;
        int dstDataSize = 16;
        int mask = 128;
        int repeat = 0;
    };
    extern "C" __global__ __aicore__ void reduce_kernel(__gm__ uint8_t* src, __gm__ uint8_t* dstGm)
    {
        KernelReduce op;
        op.Init(src, dstGm);
        op.Process();
    }
    

    示例结果如下:

    输入数据(src_gm):
    [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1.]
    输出数据(dst_gm):
    [128. 128. 128. 128. 128. 128. 128. 128. 128. 128. 128. 128. 128. 128.
     128. 128.]
搜索结果
找到“0”个结果

当前产品无相关内容

未找到相关内容,请尝试其他搜索词