下载
中文
注册
我要评分
文档获取效率
文档正确性
内容完整性
文档易理解
在线提单
论坛求助
昇腾小AI

避免TPipe在对象内创建和初始化

【优先级】中

【编译器背景】创建类对象时,会分配内存空间,用于存储类中的相关成员变量或函数。当类中变量需要参与计算时,变量值从内存被加载到寄存器,计算完成后,变量从寄存器存储回内存。Scalar常量折叠和常量传播是编译器编译时的优化方式,优化前编译器会判断变量是否只初始化过一次或只赋值过一次,若满足此编译优化的前提条件,变量值将会尽量驻留在寄存器中,从而在后续使用变量时,将减少读取内存的操作,提升运行性能。

【描述】TPipe是用来管理全局内存和同步的框架,用户可以调用TPipe的接口,为TQue/TBuf进行内存分配。在编写Ascend C算子过程中,经常用一个类存放计算所需的相关变量,这里称类名为KernelExample。当TPipe对象在KernelExample类的实现中定义并初始化时,TPipe对象的内存空间在整个KernelExample对象的内存空间之中;需要注意的是,创建TPipe对象时,对象初始化会设置全局变量的TPipe指针,这导致KernelExample对象的内存有被外部污染的风险,此时编译器的编译优化将采取保守策略,不会对KernelExample对象中的Scalar变量进行常量折叠和常量传播。因此,在任何场景下,我们都建议将TPipe对象创建于KernelExample类外部,使得TPipe对象的内存空间独立于KernelExample类对象的内存空间,触发编译器对KernelExample类内Scalar的编译优化,减少算子Scalar指令耗时。

【反例】

代码中TPipe对象由KernelExample类内部创建并初始化,影响编译器scalar折叠优化,在npu侧导致scalar无谓增加。

template <typename ComputeT> class KernelExample {
 public:
     __aicore__ inline KernelExample() {}

     __aicore__ inline void Init(...)
     {
         ...
         pipe.InitBuffer(xxxBuf, BUFFER_NUM, xxxSize);
         ...
     }

 private:
     ...
     TPipe pipe;
     ...
 };

 extern "C" __global__ __aicore__ void example_kernel(...)
 {
     ...
     KernelExample<float> op;
     op.Init(...);
     ...
 }

【正例】

改为由kernel入口函数创建TPipe对象,在KernelExample类中保存TPipe指针使用。

template <typename ComputeT> class KernelExample {
 public:
     __aicore__ inline KernelExample() {}

     __aicore__ inline void Init(..., TPipe* pipeIn)
     {
         ...
         pipe = pipeIn;
         pipe->InitBuffer(xxxBuf, BUFFER_NUM, xxxSize);
         ...
     }

 private:
     ...
     TPipe* pipe;
     ...
 };

 extern "C" __global__ __aicore__ void example_kernel(...)
 {
     ...
     TPipe pipe;
     KernelExample<float> op;
     op.Init(..., &pipe);
     ...
 }

【性能对比】

图1 aiv_scalar_time优化前后对比
图2 aiv_scalar_ratio优化前后对比

通过性能数据对比可以看出,scalar time优化明显,平均时间从281us减少到236us,下降17%;平均scalar_time时延占比从21%下降到17%。因此在scalar bound的场景下可以使用此优化措施。

搜索结果
找到“0”个结果

当前产品无相关内容

未找到相关内容,请尝试其他搜索词