aclnnBincount
支持的产品型号
- Atlas 推理系列产品。
- Atlas 训练系列产品。
- Atlas A2训练系列产品/Atlas 800I A2推理产品。
接口原型
每个算子分为两段式接口,必须先调用“aclnnBincountGetWorkspaceSize”接口获取计算所需workspace大小以及包含了算子计算流程的执行器,再调用“aclnnBincount”接口执行计算。
aclnnStatus aclnnBincountGetWorkspaceSize(const aclTensor* self, const aclTensor* weights, int64_t minlength,aclTensor* out, uint64_t* workspaceSize, aclOpExecutor** executor)
aclnnStatus aclnnBincount(void* workspace, uint64_t workspaceSize, aclOpExecutor* executor, aclrtStream stream)
功能描述
算子功能:计算非负整数数组中每个数的频率。minlength为输出tensor的最小size;当weights为空指针时,self中的self[i]每出现一次,则其频率加1,当weights不为空时,self[i]每出现一次,其频率加weigths[i],最后存放到out的self[i]+1位置上;因此out大小为(self的最大值+1)与minlength中的最大值。
计算公式:
如果n是self在位置i上的值,如果指定了weights,则
否则:
aclnnBincountGetWorkspaceSize
参数说明:
- self(aclTensor*,计算输入): Device侧的aclTensor,数据类型支持INT8、INT16、INT32、INT64、UINT8,且必须是非负整数,数据格式支持1维ND,支持非连续的Tensor。
- weights(aclTensor*,计算输入): Device侧的aclTensor,self每个值的权重,可为空指针。 数据类型支持FLOAT、FLOAT16、FLOAT64、INT8、INT16、INT32、INT64、UINT8、BOOL,数据格式支持1维ND,且shape必须与self一致,支持非连续的Tensor。
- minlength(int64_t,计算输入): host侧的int型,指定输出tensor最小长度。如果计算出来的size的最大值小于minlength,则输出长度为minlength,否则为size。
- out(aclTensor *,计算输出): Device侧的aclTensor,数据类型支持INT32、INT64、FLOAT、DOUBLE,支持非连续的Tensor,且size必须为self的最大值,数据格式支持1维ND.
- workspaceSize(uint64_t *,出参): 返回需要在Device侧申请的workspace大小。
- executor(aclOpExecutor **,出参): 返回op执行器,包含了算子计算流程。
返回值:
aclnnStatus: 返回状态码,具体参见aclnn返回码。
第一段接口完成入参校验,出现以下场景时报错:
161001 (ACLNN_ERR_PARAM_NULLPTR):1. 传入的self或out是空指针。
161002 (ACLNN_ERR_PARAM_INVALID):1. self、out、weights的数据类型和数据格式不在支持的范围之内。
2. 当weights 不为空时,self、weights shape不一致。
aclnnBincount
参数说明:
- workspace(void*, 入参): 在Device侧申请的workspace内存地址。
- workspaceSize(uint64_t, 入参): 在Device侧申请的workspace大小,由第一段接口aclnnBincountGetWorkspaceSize获取。
- executor(aclOpExecutor*, 入参):op执行器,包含了算子计算流程。
- stream(aclrtStream, 入参):指定执行任务的AscendCL Stream流。
返回值:
aclnnStatus: 返回状态码,具体参见aclnn返回码。
约束与限制
无
调用示例
示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例。
#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_max.h"
#include "aclnnop/aclnn_bincount.h"
#define CHECK_RET(cond, return_expr) \
do { \
if (!(cond)) { \
return_expr; \
} \
} while (0)
#define LOG_PRINT(message, ...) \
do { \
printf(message, ##__VA_ARGS__); \
} while (0)
int64_t GetShapeSize(const std::vector<int64_t>& shape) {
int64_t shapeSize = 1;
for (auto i : shape) {
shapeSize *= i;
}
return shapeSize;
}
int Init(int32_t deviceId, aclrtStream* stream) {
// 固定写法,AscendCL初始化
auto ret = aclInit(nullptr);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
ret = aclrtSetDevice(deviceId);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
ret = aclrtCreateStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
return 0;
}
template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
aclDataType dataType, aclTensor** tensor) {
auto size = GetShapeSize(shape) * sizeof(T);
// 调用aclrtMalloc申请device侧内存
auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
// 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
// 计算连续tensor的strides
std::vector<int64_t> strides(shape.size(), 1);
for (int64_t i = shape.size() - 2; i >= 0; i--) {
strides[i] = shape[i + 1] * strides[i + 1];
}
// 调用aclCreateTensor接口创建aclTensor
*tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
shape.data(), shape.size(), *deviceAddr);
return 0;
}
int main() {
// device/stream初始化,参考AscendCL对外接口列表
int32_t deviceId = 0;
aclrtStream stream;
auto ret = Init(deviceId, &stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
// 先调max计算self中的最大元素值,然后与minlength计算输出tensorsize
std::vector<int64_t> selfShape = {8};
std::vector<int64_t> maxOutShape = {1};
void* selfDeviceAddr = nullptr;
void* maxOutDeviceAddr = nullptr;
aclTensor* self = nullptr;
aclTensor* maxOut = nullptr;
std::vector<int32_t> selfHostData = {8, 1, 2, 3, 4, 5, 6, 7};
std::vector<int32_t> maxOutHostData(1, 0);
// 创建self aclTensor
ret = CreateAclTensor(selfHostData, selfShape, &selfDeviceAddr, aclDataType::ACL_INT32, &self);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建maxOut aclTensor
ret = CreateAclTensor(maxOutHostData, maxOutShape, &maxOutDeviceAddr, aclDataType::ACL_INT32, &maxOut);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 调用CANN算子库API
uint64_t workspaceSizeMax = 0;
aclOpExecutor* executorMax;
// 调用aclnnMax第一段接口
ret = aclnnMaxGetWorkspaceSize(self, maxOut, &workspaceSizeMax, &executorMax);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnMaxGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
void* workspaceAddrMax = nullptr;
if (workspaceSizeMax > 0) {
ret = aclrtMalloc(&workspaceAddrMax, workspaceSizeMax, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
}
// 调用aclnnMax第二段接口
ret = aclnnMax(workspaceAddrMax, workspaceSizeMax, executorMax, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnMax failed. ERROR: %d\n", ret); return ret);
// 同步等待任务执行结束
ret = aclrtSynchronizeStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
// 获取输出的值,将device侧内存上的结果拷贝至host侧
std::vector<int32_t> resultData(1, 0);
ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), maxOutDeviceAddr,
sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
aclDestroyTensor(maxOut);
// 调用bincount
int64_t minlength = 0;
int64_t outSize = (resultData[0] < minlength) ? minlength : resultData[0] + 1;
std::vector<int64_t> weightsShape = {8};
std::vector<int64_t> outShape = {outSize};
void* weightsDeviceAddr = nullptr;
void* outDeviceAddr = nullptr;
aclTensor* weights = nullptr;
aclTensor* out = nullptr;
std::vector<float> weightsHostData = {1, 1, 1.1, 2, 2, 2, 3, 3};
std::vector<float> outHostData(outSize, 0);
// 创建weights aclTensor
ret = CreateAclTensor(weightsHostData, weightsShape, &weightsDeviceAddr, aclDataType::ACL_FLOAT, &weights);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建out aclTensor
ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT, &out);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 调用CANN算子库API
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
// 调用aclnnBincount第一段接口
ret = aclnnBincountGetWorkspaceSize(self, weights, minlength, out, &workspaceSize, &executor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnBincountGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
void* workspaceAddr = nullptr;
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
}
// 调用aclnnBincount第二段接口
ret = aclnnBincount(workspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnBincount failed. ERROR: %d\n", ret); return ret);
// 同步等待任务执行结束
ret = aclrtSynchronizeStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
// 获取输出的值,将device侧内存上的结果拷贝至host侧
auto size = GetShapeSize(outShape);
std::vector<float> bincuntResultData(size, 0);
ret = aclrtMemcpy(bincuntResultData.data(), bincuntResultData.size() * sizeof(bincuntResultData[0]), outDeviceAddr,
size * sizeof(bincuntResultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
for (int64_t i = 0; i < size; i++) {
LOG_PRINT("result[%ld] is: %f\n", i, bincuntResultData[i]);
}
// 释放aclTensor
aclDestroyTensor(self);
aclDestroyTensor(weights);
aclDestroyTensor(out);
// 释放资源
aclrtFree(selfDeviceAddr);
aclrtFree(outDeviceAddr);
if (workspaceSizeMax > 0) {
aclrtFree(workspaceAddrMax);
}
aclrtFree(weightsDeviceAddr);
aclrtFree(maxOutDeviceAddr);
if (workspaceSize > 0) {
aclrtFree(workspaceAddr);
}
aclrtDestroyStream(stream);
aclrtResetDevice(deviceId);
aclFinalize();
return 0;
}