aclnnDynamicQuantV2
支持的产品型号
- Atlas A2训练系列产品/Atlas 800I A2推理产品
接口原型
每个算子分为两段式接口,必须先调用“aclnnDynamicQuantV2GetWorkspaceSize”接口获取计算所需workspace大小以及包含了算子计算流程的执行器,再调用“aclnnDynamicQuantV2”接口执行计算。
aclnnStatus aclnnDynamicQuantV2GetWorkspaceSize(const aclTensor* x, const aclTensor* smoothScalesOptional, const aclTensor* groupIndexOptional, int64_t dstType, const aclTensor* yOut, const aclTensor* scaleOut, const aclTensor* offsetOut, uint64_t* workspaceSize, aclOpExecutor** executor)
aclnnstatus aclnnDynamicQuantV2(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)
功能描述
算子功能:为输入张量进行pre-token对称/非对称动态量化。MOE场景,每个专家的smoothScale是不同的,根据输入的groupIndexes进行区分
计算公式:
- 对称量化:
- 若不输入smoothScale,则
- 若输入smoothScales,则
- 非对称量化:
- 若不输入smoothScale,则
- 若输入smoothScales,则 其中row_max代表每行求最大值,row_min代表每行求最小值。当输出yOut类型为INT8时,scale_opt为255.0,offset_opt为127.0;yOut类型为INT4时,scale_opt为15.0,offset_opt为7.0。
aclnnDynamicQuantV2GetWorkspaceSize
参数说明:
- x(aclTensor*, 计算输入):必选参数,算子输入的Tensor,shape维度要大于1,Device侧的aclTensor,数据类型支持FLOAT16、BFLOAT16,支持非连续的Tensor,数据格式支持ND。
- smoothScalesOptional(aclTensor*, 计算输入):可选参数,算子输入的smoothScales,当没有groupIndexsOptional输入时shape维度时x的最后一维,有groupIndexsOptional输入时shape是两维,第一维大小是专家数,不超过1024,第二维大小是x的最后一维,Device侧的aclTensor,数据类型支持FLOAT16、BFLOAT16,并且数据类型要和x保持一致,支持非连续的Tensor,数据格式支持ND。
- groupIndexeOptional(aclTensor*, 计算输入):可选参数,算子输入的groupIndexe,shape只有一维,Device侧的aclTensor,数据类型支持INT32,支持非连续的Tensor,数据格式支持ND。
- dstType (int64_t, 计算输入):可选参数,输出y的类型对应的枚举值,Host侧的int,如果输出y类型为INT8,则为2;y类型为INT4时,则为29,默认为2。
- yOut(aclTensor*, 计算输出):量化后的输出Tensor,shape维度和x保持一致,Device侧的aclTensor,数据类型支持INT4,INT8,暂不支持非连续的Tensor,数据格式支持ND。
- scaleOut(aclTensor*, 计算输出):量化使用的scale,shape维度为x的shape剔除最后一维,Device侧的aclTensor,数据类型支持FLOAT,暂不支持非连续的Tensor,数据格式支持ND。
- offsetOut(aclTensor*, 计算输出):非对称量化使用的offset,shape维度为x的shape剔除最后一维,Device侧的aclTensor,数据类型支持FLOAT,暂不支持非连续的Tensor,数据格式支持ND。
- workspaceSize(uint64_t*, 出参):返回需要在Device侧申请的workspace大小。
- executor(aclOpExecutor**, 出参):返回op执行器,包含了算子计算流程。
返回值:
aclnnStatus: 返回状态码,具体参见aclnn返回码。
第一段接口完成入参校验,出现以下场景时报错: 返回161001 (ACLNN_ERR_PARAM_NULLPTR):1. 传入的x或out参数是空指针。 返回561002 (ACLNN_ERR_PARAM_INVALID):1. 输入或输出数据格式不在支持的范围之内 返回561003 (ACLNN_ERR_INNER_FIND_KERNEL_ERROR):1. 输入或输出的数据类型不在支持范围之内
aclnnDynamicQuantV2
参数说明:
- workspace(void *, 入参):在Device侧申请的workspace内存地址。
- workspaceSize(uint64_t, 入参):在Device侧申请的workspace大小,由第一段接口aclnnAbsGetWorkspaceSize获取。
- executor(aclOpExecutor *, 入参):op执行器,包含了算子计算流程。
- stream(aclrtStream, 入参):指定执行任务的AscendCL Stream流。
返回值:
aclnnStatus: 返回状态码,具体参见aclnn返回码。
约束与限制
针对Atlas A2训练系列产品/Atlas 800I A2推理产品,groupIndexesOptional的维度不超过1024。
调用示例
示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例。
#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_dynamic_quant_v2.h"
#define CHECK_RET(cond, return_expr) \
do { \
if (!(cond)) { \
return_expr; \
} \
} while (0)
#define LOG_PRINT(message, ...) \
do { \
printf(message, ##__VA_ARGS__); \
} while (0)
int64_t GetShapeSize(const std::vector<int64_t>& shape) {
int64_t shapeSize = 1;
for (auto i : shape) {
shapeSize *= i;
}
return shapeSize;
}
void PrintOutResult(std::vector<int64_t> &shape, void** deviceAddr) {
auto size = GetShapeSize(shape);
std::vector<float> resultData(size, 0);
auto ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]),
*deviceAddr, size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return);
for (int64_t i = 0; i < size; i++) {
LOG_PRINT("mean result[%ld] is: %f\n", i, resultData[i]);
}
}
int Init(int32_t deviceId, aclrtStream* stream) {
// 固定写法,AscendCL初始化
auto ret = aclInit(nullptr);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
ret = aclrtSetDevice(deviceId);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
ret = aclrtCreateStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
return 0;
}
template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
aclDataType dataType, aclTensor** tensor) {
auto size = GetShapeSize(shape) * sizeof(T);
// 调用aclrtMalloc申请device侧内存
auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
// 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
// 计算连续tensor的strides
std::vector<int64_t> strides(shape.size(), 1);
for (int64_t i = shape.size() - 2; i >= 0; i--) {
strides[i] = shape[i + 1] * strides[i + 1];
}
// 调用aclCreateTensor接口创建aclTensor
*tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
shape.data(), shape.size(), *deviceAddr);
return 0;
}
int main() {
// 1. (固定写法)device/stream初始化,参考AscendCL对外接口列表
// 根据自己的实际device填写deviceId
int32_t deviceId = 0;
aclrtStream stream;
auto ret = Init(deviceId, &stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
// 2. 构造输入与输出,需要根据API的接口自定义构造
int rowNum = 4;
int rowLen = 2;
int groupNum = 2;
std::vector<int64_t> xShape = {4, 2};
std::vector<int64_t> smoothShape = {groupNum, rowLen};
std::vector<int64_t> groupShape = {groupNum};
std::vector<int64_t> yShape = {4, 2};
std::vector<int64_t> scaleShape = {4};
std::vector<int64_t> offsetShape = {4};
void* xDeviceAddr = nullptr;
void* smoothDeviceAddr = nullptr;
void* groupDeviceAddr = nullptr;
void* yDeviceAddr = nullptr;
void* scaleDeviceAddr = nullptr;
void* offsetDeviceAddr = nullptr;
aclTensor* x = nullptr;
aclTensor* smooth = nullptr;
aclTensor* group = nullptr;
aclTensor* y = nullptr;
aclTensor* scale = nullptr;
aclTensor* offset = nullptr;
std::vector<aclFloat16> xHostData;
std::vector<aclFloat16> smoothHostData;
std::vector<int32_t> groupHostData = {2, rowNum};
std::vector<int8_t> yHostData;
std::vector<float> scaleHostData;
std::vector<float> offsetHostData;
for (int i = 0; i < rowNum; ++i) {
for (int j = 0; j < rowLen; ++j) {
float value1 = i * rowLen + j;
xHostData.push_back(aclFloatToFloat16(value1));
yHostData.push_back(0);
}
scaleHostData.push_back(0);
offsetHostData.push_back(0);
}
for (int m = 0; m < groupNum; ++m) {
for (int n = 0; n < rowLen; ++n) {
float value2 = m * rowLen + n;
smoothHostData.push_back(aclFloatToFloat16(value2));
}
}
// 创建x aclTensor
ret = CreateAclTensor(xHostData, xShape, &xDeviceAddr, aclDataType::ACL_FLOAT16, &x);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建smooth aclTensor
ret = CreateAclTensor(smoothHostData, smoothShape, &smoothDeviceAddr, aclDataType::ACL_FLOAT16, &smooth);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建group aclTensor
ret = CreateAclTensor(groupHostData, groupShape, &groupDeviceAddr, aclDataType::ACL_INT32, &group);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建y aclTensor
ret = CreateAclTensor(yHostData, yShape, &yDeviceAddr, aclDataType::ACL_INT8, &y);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建scale aclTensor
ret = CreateAclTensor(scaleHostData, scaleShape, &scaleDeviceAddr, aclDataType::ACL_FLOAT, &scale);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建offset aclTensor
ret = CreateAclTensor(offsetHostData, offsetShape, &offsetDeviceAddr, aclDataType::ACL_FLOAT, &offset);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 3. 调用CANN算子库API,需要修改为具体的Api名称
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
// 调用aclnnDynamicQuantV2第一段接口
ret = aclnnDynamicQuantV2GetWorkspaceSize(x, smooth, group, 2, y, scale, offset, &workspaceSize, &executor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnDynamicQuantV2GetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
void* workspaceAddr = nullptr;
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
}
// 调用aclnnDynamicQuantV2第二段接口
ret = aclnnDynamicQuantV2(workspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnDynamicQuantV2 failed. ERROR: %d\n", ret); return ret);
// 4. (固定写法)同步等待任务执行结束
ret = aclrtSynchronizeStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
// 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
PrintOutResult(yShape, &yDeviceAddr);
// 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
aclDestroyTensor(x);
aclDestroyTensor(smooth);
aclDestroyTensor(y);
aclDestroyTensor(scale);
aclDestroyTensor(offset);
// 7. 释放device资源
aclrtFree(xDeviceAddr);
aclrtFree(smoothDeviceAddr);
aclrtFree(yDeviceAddr);
aclrtFree(scaleDeviceAddr);
aclrtFree(offsetDeviceAddr);
if (workspaceSize > 0) {
aclrtFree(workspaceAddr);
}
aclrtDestroyStream(stream);
aclrtResetDevice(deviceId);
aclFinalize();
return 0;
}