下载
中文
注册
我要评分
文档获取效率
文档正确性
内容完整性
文档易理解
在线提单
论坛求助
昇腾小AI

aclnnEmbeddingRenorm

支持的产品型号

  • Atlas 训练系列产品。
  • Atlas A2训练系列产品/Atlas 800I A2推理产品。

接口原型

每个算子分为两段式接口,必须先调用“aclnnEmbeddingRenormGetWorkspaceSize”接口获取计算所需workspace大小以及包含了算子计算流程的执行器,再调用“aclnnEmbeddingRenor”接口执行计算。

  • aclnnStatus aclnnEmbeddingRenormGetWorkspaceSize(aclTensor *selfRef, const aclTensor *indices, double maxNorm, double normType, uint64_t *workspaceSize, aclOpExecutor **executor)
  • aclnnStatus aclnnEmbeddingRenorm(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, const aclrtStream stream)

功能描述

  • 算子功能:根据给定的maxNorm和normType返回输入tensor在制定indices下的修正结果。

  • 计算公式:向量的范数计算公式如下,其中n为normType指定的范数值:

    Xp=i=1nxipp||X||_{p}=\sqrt[p]{\sum_{i=1}^nx_{i}^p} 其中X=(x1,x2,...,xn)其中X=(x_{1}, x_{2}, ... , x_{n})

    针对计算出的范数大于maxNorm的场景,需要做归一化处理,对indices指定的0维元素乘以系数:

    scalar=maxNormcurrentNorm+1e7scalar = \frac{maxNorm}{currentNorm+1e^{-7}}

aclnnEmbeddingRenormGetWorkspaceSize

  • 参数说明:

    • selfRef(aclTensor*, 计算输入/输出):待进行renorm计算的入参,dim必须为2。Device侧的aclTensor,数据类型支持bfloat16(仅Atlas A2训练系列产品/Atlas 800I A2推理产品支持)、float16、float32类型,数据格式支持ND,支持非连续的Tensor。
    • indices(aclTensor*, 计算输入):selfRef中第0维上待进行renorm计算的索引。Device侧的aclTensor,数据类型支持int32、int64类型,数据格式支持ND,支持非连续的Tensor。indices中的索引数据不支持越界。
    • maxNorm(double, 计算输入):指定范数的最大值,超出此值需要对embedding的结果进行归一化处理,仅支持double类型。
    • normType(double, 计算输入):指定L_P范数的类型,仅支持double类型。
    • workspaceSize(uint64_t*, 出参):返回需要在Device侧申请的workspace大小。
    • executor(aclOpExecutor**, 出参):返回op执行器,包含了算子计算流程。
  • 返回值:

    aclnnStatus:返回状态码,具体参见aclnn返回码

    161001(ACLNN_ERR_PARAM_NULLPTR):1. 传入的selfRef、indices是空指针。
    161002(ACLNN_ERR_PARAM_INVALID):1. selfRef、indices、maxNorm、normType的数据类型和数据格式不在支持的范围之内。
                                    2. selfRef的dim不为2、indices的dim超出8维。

aclnnEmbeddingRenorm

  • 参数说明:

    • workspace(void*, 入参):在Device侧申请的workspace内存地址。
    • workspaceSize(uint64_t, 入参):在Device侧申请的workspace大小,由第一段接口aclnnEmbeddingRenorm获取。
    • executor(aclOpExecutor*, 入参):op执行器,包含了算子计算流程。
    • stream(aclrtStream, 入参):指定执行任务的AscendCL Stream流。
  • 返回值:

    aclnnStatus:返回状态码,具体参见aclnn返回码

约束与限制

调用示例

示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例

#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_embedding_renorm.h"

#define CHECK_RET(cond, return_expr) \
 do {                                \
  if (!(cond)) {                     \
    return_expr;                     \
  }                                  \
 } while(0)

#define LOG_PRINT(message, ...)   \
 do {                             \
  printf(message, ##__VA_ARGS__); \
 } while(0)

int64_t GetShapeSize(const std::vector<int64_t>& shape) {
  int64_t shape_size = 1;
  for (auto i : shape) {
    shape_size *= i;
  }
  return shape_size;
}

int Init(int32_t deviceId, aclrtStream* stream) {
  // 固定写法,AscendCL初始化
  auto ret = aclInit(nullptr);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
  ret = aclrtSetDevice(deviceId);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
  ret = aclrtCreateStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
  return 0;
}

template<typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
                    aclDataType dataType, aclTensor** tensor) {
  auto size = GetShapeSize(shape) * sizeof(T);
  // 调用aclrtMalloc申请device侧引擎
  auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);

  // 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
  ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);

  // 计算连续tensor的strides
  std::vector<int64_t> strides(shape.size(), 1);
  for (int64_t i = shape.size() - 2; i >= 0; i--) {
    strides[i] = shape[i + 1] * strides[i + 1];
  }

  // 调用aclCreateTensor接口创建aclTensor
  *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
                            shape.data(), shape.size(), *deviceAddr);
  return 0;
}

int main() {
  int32_t deviceId = 0;
  aclrtStream stream;
  auto ret = Init(deviceId, &stream);
  CHECK_RET(ret == 0, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
  std::vector<int64_t> selfShape = {4, 2};
  std::vector<int64_t> indicesShape = {4, 2};
  void* selfDeviceAddr = nullptr;
  void* indicesDeviceAddr = nullptr;
  aclTensor* self = nullptr;
  aclTensor* indices = nullptr;
  std::vector<float> selfHostData = {0, 1, 2, 3, 4, 5, 6, 7};
  std::vector<int> indicesHostData = {1, 1, 1, 1, 0, 0, 0, 0};
  float normType = 1.0f;
  float maxNorm = 2.0f;
  ret = CreateAclTensor(selfHostData, selfShape, &selfDeviceAddr, aclDataType::ACL_FLOAT, &self);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  ret = CreateAclTensor(indicesHostData, indicesShape, &indicesDeviceAddr, aclDataType::ACL_INT32, &indices);
  CHECK_RET(ret == ACL_SUCCESS, return ret);

  uint64_t workspaceSize = 0;
  aclOpExecutor* executor;
  ret = aclnnEmbeddingRenormGetWorkspaceSize(self, indices, maxNorm, normType, &workspaceSize, &executor);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnEmbeddingRenormGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);

  void* workspaceAddr = nullptr;
  if (workspaceSize > 0) {
    ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
  }

  ret = aclnnEmbeddingRenorm(workspaceAddr, workspaceSize, executor, stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnEmbeddingRenorm failed. ERROR: %d\n", ret); return ret);

  ret = aclrtSynchronizeStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);

  auto size = GetShapeSize(selfShape);
  std::vector<float> resultData(size, 0);
  ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), selfDeviceAddr, size * sizeof(float),
                    ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
  for (int64_t i = 0; i < size; i++) {
    LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]);
  }

  aclDestroyTensor(self);
  aclDestroyTensor(indices);
  aclrtFree(selfDeviceAddr);
  aclrtFree(indicesDeviceAddr);
  if (workspaceSize > 0) {
    aclrtFree(workspaceAddr);
  }
  aclrtDestroyStream(stream);
  aclrtResetDevice(deviceId);
  aclFinalize();
  return 0;
}
搜索结果
找到“0”个结果

当前产品无相关内容

未找到相关内容,请尝试其他搜索词