下载
中文
注册
我要评分
文档获取效率
文档正确性
内容完整性
文档易理解
在线提单
论坛求助
昇腾小AI

aclnnForeachExp

支持的产品型号

  • Atlas A2训练系列产品/Atlas 800I A2推理产品。

接口原型

每个算子分为两段式接口,必须先调用“aclnnForeachExpGetWorkspaceSize”接口获取入参并根据计算流程计算所需workspace大小,再调用“aclnnForeachExp”接口执行计算。

  • aclnnStatus aclnnForeachExpGetWorkspaceSize(const aclTensorList *x, aclTensorList *out, uint64_t *workspaceSize, aclOpExecutor **executor)
  • aclnnStatus aclnnForeachExp(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)

功能描述

  • 算子功能:

    返回一个和输入张量列表同样形状大小的新张量列表,它的每一个张量是输入张量列表的每个张量进行指数运算的结果。

  • 计算公式:

    outi=exi{out_i}=e^{x_i}

aclnnForeachExpGetWorkspaceSize

  • 参数说明

    • x(aclTensorList*,计算输入):公式中的x,Device侧的aclTensorList,数据类型支持FLOAT、FLOAT16、BFLOAT16。shape维度不高于8维,数据格式支持ND。支持非连续的Tensor。数据类型、数据格式和shape与出参out的数据类型、数据格式和shape一致。
    • out(aclTensorList*,计算输出):公式中的out,Device侧的aclTensorList,数据类型支持FLOAT、FLOAT16、BFLOAT16。shape维度不高于8维,数据格式支持ND。支持非连续的Tensor。数据类型、数据格式和shape与入参x的数据类型、数据格式和shape一致。
    • workspaceSize(uint64_t*,出参):返回用户需要在Device侧申请的workspace大小。
    • executor(aclOpExecutor**,出参):返回op执行器,包含了算子计算流程。
  • 返回值

    aclnnStatus:返回状态码,具体参见aclnn返回码

    第一段接口完成入参校验,出现以下场景时报错:
    返回161001(ACLNN_ERR_PARAM_NULLPTR): 1. 传入的x、out是空指针。
    返回161002(ACLNN_ERR_PARAM_INVALID): 1. x和out的数据类型不在支持的范围之内。
                                          2. x和out无法做数据类型推导。

aclnnForeachExp

  • 参数说明

    • workspace(void*,入参):在Device侧申请的workspace内存地址。
    • workspaceSize(uint64_t,入参):在Device侧申请的workspace大小,由第一段接口aclnnForeachExpGetWorkspaceSize获取。
    • executor(aclOpExecutor*,入参):op执行器,包含了算子计算流程。
    • stream(aclrtStream,入参):指定执行任务的AscendCL Stream流。
  • 返回值

    aclnnStatus:返回状态码,具体参见aclnn返回码

约束与限制

无。

调用示例

示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例

#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_foreach_exp.h"

#define CHECK_RET(cond, return_expr) \
  do {                               \
    if (!(cond)) {                   \
      return_expr;                   \
    }                                \
  } while (0)

#define LOG_PRINT(message, ...)     \
  do {                              \
    printf(message, ##__VA_ARGS__); \
  } while (0)

int64_t GetShapeSize(const std::vector<int64_t>& shape) {
  int64_t shapeSize = 1;
  for (auto i : shape) {
    shapeSize *= i;
  }
  return shapeSize;
}

int Init(int32_t deviceId, aclrtStream *stream)
{
    // 固定写法,acl初始化
    auto ret = aclInit(nullptr);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
    ret = aclrtSetDevice(deviceId);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
    ret = aclrtCreateStream(stream);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
    return 0;
}

template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
                    aclDataType dataType, aclTensor** tensor) {
  auto size = GetShapeSize(shape) * sizeof(T);
  // 调用aclrtMalloc申请device侧内存
  auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
  // 调用aclrtMemcpy将host侧数据复制到device侧内存上
  ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);

  // 计算连续tensor的strides
  std::vector<int64_t> strides(shape.size(), 1);
  for (int64_t i = shape.size() - 2; i >= 0; i--) {
    strides[i] = shape[i + 1] * strides[i + 1];
  }

  // 调用aclCreateTensor接口创建aclTensor
  *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
                            shape.data(), shape.size(), *deviceAddr);
  return 0;
}

int main() {
  // 1. (固定写法)device/stream初始化,参考AscendCL对外接口列表
  // 根据自己的实际device填写deviceId
  int32_t deviceId = 0;
  aclrtStream stream;
  auto ret = Init(deviceId, &stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);

  // 2. 构造输入与输出,需要根据API的接口自定义构造
  std::vector<int64_t> selfShape1 = {2, 3};
  std::vector<int64_t> selfShape2 = {1, 3};
  std::vector<int64_t> outShape1 = {2, 3};
  std::vector<int64_t> outShape2 = {1, 3};
  void* input1DeviceAddr = nullptr;
  void* input2DeviceAddr = nullptr;
  void* out1DeviceAddr = nullptr;
  void* out2DeviceAddr = nullptr; 
  aclTensor* input1 = nullptr;
  aclTensor* input2 = nullptr;
  aclTensor* out1 = nullptr;
  aclTensor* out2 = nullptr;
  std::vector<float> input1HostData = {1, 2, 3, 4, 5, 6};
  std::vector<float> input2HostData = {7, 8, 9};
  std::vector<float> out1HostData(6, 0);
  std::vector<float> out2HostData(3, 0);

  // 创建input1 aclTensor
  ret = CreateAclTensor(input1HostData, selfShape1, &input1DeviceAddr, aclDataType::ACL_FLOAT, &input1);
  CHECK_RET(ret == ACL_SUCCESS, return ret);

  // 创建input2 aclTensor
  ret = CreateAclTensor(input2HostData, selfShape2, &input2DeviceAddr, aclDataType::ACL_FLOAT, &input2);
  CHECK_RET(ret == ACL_SUCCESS, return ret);

  // 创建out1 aclTensor
  ret = CreateAclTensor(out1HostData, outShape1, &out1DeviceAddr, aclDataType::ACL_FLOAT, &out1);
  CHECK_RET(ret == ACL_SUCCESS, return ret);

  // 创建out2 aclTensor
  ret = CreateAclTensor(out2HostData, outShape2, &out2DeviceAddr, aclDataType::ACL_FLOAT, &out2);
  CHECK_RET(ret == ACL_SUCCESS, return ret);

  std::vector<aclTensor*> tempInput{input1, input2};
  aclTensorList* tensorListInput = aclCreateTensorList(tempInput.data(), tempInput.size());
  std::vector<aclTensor*> tempOutput{out1, out2};
  aclTensorList* tensorListOutput = aclCreateTensorList(tempOutput.data(), tempOutput.size());

  // 3. 调用CANN算子库API,需要修改为具体的Api名称
  uint64_t workspaceSize = 0;
  aclOpExecutor* executor;
  // 调用aclnnForeachExp第一段接口
  ret = aclnnForeachExpGetWorkspaceSize(tensorListInput, tensorListOutput, &workspaceSize, &executor);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnForeachExpGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
  // 根据第一段接口计算出的workspaceSize申请device内存
  void* workspaceAddr = nullptr;
  if (workspaceSize > 0) {
    ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
  }
  // 调用aclnnForeachExp第二段接口
  ret = aclnnForeachExp(workspaceAddr, workspaceSize, executor, stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnForeachExp failed. ERROR: %d\n", ret); return ret);

  // 4. (固定写法)同步等待任务执行结束
  ret = aclrtSynchronizeStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);

  // 5. 获取输出的值,将device侧内存上的结果复制至host侧,需要根据具体API的接口定义修改
  auto size = GetShapeSize(outShape1);
  std::vector<float> out1Data(size, 0);
  ret = aclrtMemcpy(out1Data.data(), out1Data.size() * sizeof(out1Data[0]), out1DeviceAddr,
                    size * sizeof(out1Data[0]), ACL_MEMCPY_DEVICE_TO_HOST);
  for (int64_t i = 0; i < size; i++) {
    LOG_PRINT("out1 result[%ld] is: %f\n", i, out1Data[i]);
  }

  size = GetShapeSize(outShape2);
  std::vector<float> out2Data(size, 0);
  ret = aclrtMemcpy(out2Data.data(), out2Data.size() * sizeof(out2Data[0]), out2DeviceAddr,
                    size * sizeof(out2Data[0]), ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
  for (int64_t i = 0; i < size; i++) {
    LOG_PRINT("out2 result[%ld] is: %f\n", i, out2Data[i]);
  }

  // 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
  aclDestroyTensorList(tensorListInput);
  aclDestroyTensorList(tensorListOutput);

  // 7.释放device资源,需要根据具体API的接口定义修改
  aclrtFree(input1DeviceAddr);
  aclrtFree(input2DeviceAddr);
  aclrtFree(out1DeviceAddr);
  aclrtFree(out2DeviceAddr);
  if (workspaceSize > 0) {
    aclrtFree(workspaceAddr);
  }
  aclrtDestroyStream(stream);
  aclrtResetDevice(deviceId);
  aclFinalize();
  return 0;
}
搜索结果
找到“0”个结果

当前产品无相关内容

未找到相关内容,请尝试其他搜索词