aclnnLerps&aclnnInplaceLerps
支持的产品型号
- Atlas 训练系列产品。
- Atlas A2训练系列产品/Atlas 800I A2推理产品。
接口原型
aclnnLerps和aclnnInplaceLerps实现相同的功能,使用区别如下,请根据自身实际场景选择合适的算子。
- aclnnLerps:需新建一个输出张量对象存储计算结果。
- aclnnInplaceLerps:无需新建输出张量对象,直接在输入张量的内存中存储计算结果。
每个算子分为两段式接口,必须先调用“aclnnLerpsGetWorkspaceSize”或者“aclnnInplaceLerpsGetWorkspaceSize”接口获取计算所需workspace大小以及包含了算子计算流程的执行器,再调用“aclnnLerps”或者“aclnnInplaceLerps”接口执行计算。
aclnnStatus aclnnLerpsGetWorkspaceSize(const aclTensor* self, const aclTensor* end, const aclScalar* weight, aclTensor* out, uint64_t* workspaceSize, aclOpExecutor** executor)
aclnnStatus aclnnLerps(void* workspace, uint64_t workspaceSize, aclOpExecutor* executor, aclrtStream stream)
aclnnStatus aclnnInplaceLerpsGetWorkspaceSize(aclTensor* selfRef, const aclTensor* end, const aclScalar* weight, uint64_t* workspaceSize, aclOpExecutor** executor)
aclnnStatus aclnnInplaceLerps(void* workspace, uint64_t workspaceSize, aclOpExecutor* executor, aclrtStream stream)
功能描述
算子功能:根据给定的权重,在起始和结束Tensor之间进行线性插值,返回插值后的Tensor。
计算公式:
aclnnLerpsGetWorkspaceSize
参数说明:
- self(aclTensor*, 计算输入):公式中的输入
start
,Device侧的aclTensor,self与end的数据类型一致,self与end的shape满足broadcast关系。支持非连续的Tensor,数据格式支持ND。- Atlas 推理系列产品、Atlas 训练系列产品:数据类型支持FLOAT16、FLOAT。
- Atlas A2训练系列产品/Atlas 800I A2推理产品:数据类型支持BFLOAT16、FLOAT16、FLOAT。
- end(aclTensor*, 计算输入):公式中的输入
end
,Device侧的aclTensor,self与end的数据类型一致,self与end的shape满足broadcast关系。支持非连续的Tensor,数据格式支持ND。- Atlas 推理系列产品、Atlas 训练系列产品:数据类型支持FLOAT16、FLOAT。
- Atlas A2训练系列产品/Atlas 800I A2推理产品:数据类型支持BFLOAT16、FLOAT16、FLOAT。
- weight(aclScalar*, 计算输入):公式中的输入
weight
,Host侧的aclScalar,数据类型需要可转换成self的数据类型(参见互转换关系)。 - out(aclTensor*, 计算输出):公式中的
out
,Device侧的aclTensor,out与self和end broadcast之后的tensor的shape一致。支持非连续的Tensor,数据格式支持ND。- Atlas 推理系列产品、Atlas 训练系列产品:数据类型支持FLOAT16、FLOAT、DOUBLE。
- Atlas A2训练系列产品/Atlas 800I A2推理产品:数据类型支持BFLOAT16、FLOAT16、FLOAT、DOUBLE。
- workspaceSize(uint64_t*, 出参):返回需要在Device侧申请的workspace大小。
- executor(aclOpExecutor**, 出参):返回op执行器,包含了算子计算流程。
- self(aclTensor*, 计算输入):公式中的输入
返回值:
aclnnStatus:返回状态码,具体参见aclnn返回码。
第一段接口完成入参校检,出现以下场景时报错: 返回161001(ACLNN_ERR_PARAM_NULLPTR):1.传入的self、end、weight和out是空指针。 返回161002(ACLNN_ERR_PARAM_INVALID):1.self、end和out的数据类型不在支持的范围之内。 2.self和end的数据类型不一致。 3.self和end无法做broadcast。 4.self和end做broadcast后的shape与out的shape不一致。
aclnnLerps
参数说明:
- workspace(void*, 入参):在Device侧申请的workspace内存地址。
- workspaceSize(uint64_t, 入参):在Device侧申请的workspace大小,由第一段接口aclnnLerpsGetWorkspaceSize获取。
- executor(aclOpExecutor*, 入参):op执行器,包含了算子计算流程。
- stream(aclrtStream, 入参):指定执行任务的AscendCL Stream流。
返回值:
aclnnStatus:返回状态码,具体参见aclnn返回码。
aclnnInplaceLerpsGetWorkspaceSize
参数说明:
- selfRef(aclTensor*, 计算输入/输出):公式中的输入
start
和输出out
,Device侧的aclTensor,selfRef与end数据类型一致,self与end的shape满足broadcast关系,且broadcast后的shape与selfRef一致。支持非连续的Tensor,数据格式支持ND。- Atlas 推理系列产品、Atlas 训练系列产品:数据类型支持FLOAT16、FLOAT。
- Atlas A2训练系列产品/Atlas 800I A2推理产品:数据类型支持BFLOAT16、FLOAT16、FLOAT。
- end(aclTensor*, 计算输入):公式中的输入
end
,Device侧的aclTensor,selfRef与end的数据类型一致,selfRef与end的shape满足broadcast关系。支持非连续的Tensor,数据格式支持ND。- Atlas 推理系列产品、Atlas 训练系列产品:数据类型支持FLOAT16、FLOAT。
- Atlas A2训练系列产品/Atlas 800I A2推理产品:数据类型支持BFLOAT16、FLOAT16、FLOAT。
- weight(aclScalar*, 计算输入):公式中的输入
weight
,Host侧的aclScalar,数据类型需要可转换成selfRef的数据类型(参见互转换关系)。 - workspaceSize(uint64_t*, 出参):返回需要在Device侧申请的workspace大小。
- executor(aclOpExecutor**, 出参):返回op执行器,包含了算子计算流程。
- selfRef(aclTensor*, 计算输入/输出):公式中的输入
返回值:
aclnnStatus:返回状态码,具体参见aclnn返回码。
第一段接口完成入参校检,出现以下场景时报错: 返回161001(ACLNN_ERR_PARAM_NULLPTR):1.传入的selfRef、end和weight是空指针。 返回161002(ACLNN_ERR_PARAM_INVALID):1.selfRef和end的数据类型不在支持的范围之内。 2.selfRef与end的数据类型不一致。 3.selfRef和end无法做broadcast。 4.selfRef和end做broadcast后的shape与selfRef的shape不一致。
aclnnInplaceLerps
参数说明:
- workspace(void*, 入参):在Device侧申请的workspace内存地址。
- workspaceSize(uint64_t, 入参):在Device侧申请的workspace大小,由第一段接口aclnnInplaceLerpsGetWorkspaceSize获取。
- executor(aclOpExecutor*, 入参):op执行器,包含了算子计算流程。
- stream(aclrtStream, 入参):指定执行任务的AscendCL Stream流。
返回值:
aclnnStatus:返回状态码,具体参见aclnn返回码。
约束与限制
无
调用示例
示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例。
aclnnLerps
#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_lerp_scalar.h"
#define CHECK_RET(cond, return_expr) \
do { \
if (!(cond)) { \
return_expr; \
} \
} while (0)
#define LOG_PRINT(message, ...) \
do { \
printf(message, ##__VA_ARGS__); \
} while (0)
int64_t GetShapeSize(const std::vector<int64_t>& shape) {
int64_t shapeSize = 1;
for (auto i : shape) {
shapeSize *= i;
}
return shapeSize;
}
int Init(int32_t deviceId, aclrtStream* stream) {
// 固定写法,AscendCL初始化
auto ret = aclInit(nullptr);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
ret = aclrtSetDevice(deviceId);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
ret = aclrtCreateStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
return 0;
}
template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
aclDataType dataType, aclTensor** tensor) {
auto size = GetShapeSize(shape) * sizeof(T);
// 调用aclrtMalloc申请device侧内存
auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
// 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
// 计算连续tensor的strides
std::vector<int64_t> strides(shape.size(), 1);
for (int64_t i = shape.size() - 2; i >= 0; i--) {
strides[i] = shape[i + 1] * strides[i + 1];
}
// 调用aclCreateTensor接口创建aclTensor
*tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
shape.data(), shape.size(), *deviceAddr);
return 0;
}
int main() {
// 1. (固定写法)device/stream初始化,参考AscendCL对外接口列表
int32_t deviceId = 0;
aclrtStream stream;
auto ret = Init(deviceId, &stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
// 2. 构造输入与输出,需要根据API的接口自定义构造
std::vector<int64_t> selfShape = {4, 2};
std::vector<int64_t> endShape = {4, 2};
std::vector<int64_t> weightShape = {1};
std::vector<int64_t> outShape = {4, 2};
void* selfDeviceAddr = nullptr;
void* endDeviceAddr = nullptr;
void* outDeviceAddr = nullptr;
aclTensor* self = nullptr;
aclTensor* end = nullptr;
aclScalar* weight = nullptr;
aclTensor* out = nullptr;
std::vector<float> selfHostData = {1, 2, 3, 4, 5, 6, 7, 8};
std::vector<float> endHostData = {4, 5, 6, 7, 8, 9, 10, 11};
std::vector<float> outHostData = {0, 0, 0, 0, 0, 0, 0, 0};
float weightValue = 2.0f;
// 创建self aclTensor
ret = CreateAclTensor(selfHostData, selfShape, &selfDeviceAddr, aclDataType::ACL_FLOAT, &self);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建end aclTensor
ret = CreateAclTensor(endHostData, endShape, &endDeviceAddr, aclDataType::ACL_FLOAT, &end);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建weight aclScalar
weight = aclCreateScalar(&weightValue, aclDataType::ACL_FLOAT);
CHECK_RET(weight != nullptr, return ret);
// 创建out aclTensor
ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT, &out);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 3. 调用CANN算子库API
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
// 调用aclnnLerps第一段接口
ret = aclnnLerpsGetWorkspaceSize(self, end, weight, out, &workspaceSize, &executor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnLerpsGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
void* workspaceAddr = nullptr;
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
}
// 调用aclnnLerps第二段接口
ret = aclnnLerps(workspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnLerps failed. ERROR: %d\n", ret); return ret);
// 4. (固定写法)同步等待任务执行结束
ret = aclrtSynchronizeStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
// 5. 获取输出的值,将device侧内存上的结果拷贝至host侧
auto size = GetShapeSize(outShape);
std::vector<float> resultData(size, 0);
ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), outDeviceAddr,
size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
for (int64_t i = 0; i < size; i++) {
LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]);
}
// 6. 释放aclTensor和aclScalar
aclDestroyTensor(self);
aclDestroyTensor(end);
aclDestroyScalar(weight);
aclDestroyTensor(out);
// 7. 释放device资源,需要根据具体API的接口定义修改
aclrtFree(selfDeviceAddr);
aclrtFree(endDeviceAddr);
aclrtFree(outDeviceAddr);
if (workspaceSize > 0) {
aclrtFree(workspaceAddr);
}
aclrtDestroyStream(stream);
aclrtResetDevice(deviceId);
aclFinalize();
return 0;
}
aclnnInplaceLerps
#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_lerp_scalar.h"
#define CHECK_RET(cond, return_expr) \
do { \
if (!(cond)) { \
return_expr; \
} \
} while (0)
#define LOG_PRINT(message, ...) \
do { \
printf(message, ##__VA_ARGS__); \
} while (0)
int64_t GetShapeSize(const std::vector<int64_t>& shape) {
int64_t shapeSize = 1;
for (auto i : shape) {
shapeSize *= i;
}
return shapeSize;
}
int Init(int32_t deviceId, aclrtStream* stream) {
// 固定写法,AscendCL初始化
auto ret = aclInit(nullptr);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
ret = aclrtSetDevice(deviceId);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
ret = aclrtCreateStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
return 0;
}
template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
aclDataType dataType, aclTensor** tensor) {
auto size = GetShapeSize(shape) * sizeof(T);
// 调用aclrtMalloc申请device侧内存
auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
// 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
// 计算连续tensor的strides
std::vector<int64_t> strides(shape.size(), 1);
for (int64_t i = shape.size() - 2; i >= 0; i--) {
strides[i] = shape[i + 1] * strides[i + 1];
}
// 调用aclCreateTensor接口创建aclTensor
*tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
shape.data(), shape.size(), *deviceAddr);
return 0;
}
int main() {
// 1. (固定写法)device/stream初始化,参考AscendCL对外接口列表
int32_t deviceId = 0;
aclrtStream stream;
auto ret = Init(deviceId, &stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
// 2. 构造输入与输出,需要根据API的接口自定义构造
std::vector<int64_t> selfShape = {4, 2};
std::vector<int64_t> endShape = {4, 2};
std::vector<int64_t> weightShape = {1};
void* selfDeviceAddr = nullptr;
void* endDeviceAddr = nullptr;
aclTensor* self = nullptr;
aclTensor* end = nullptr;
aclScalar* weight = nullptr;
std::vector<float> selfHostData = {1, 2, 3, 4, 5, 6, 7, 8};
std::vector<float> endHostData = {4, 5, 6, 7, 8, 9, 10, 11};
float weightValue = 2.0f;
// 创建self aclTensor
ret = CreateAclTensor(selfHostData, selfShape, &selfDeviceAddr, aclDataType::ACL_FLOAT, &self);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建end aclTensor
ret = CreateAclTensor(endHostData, endShape, &endDeviceAddr, aclDataType::ACL_FLOAT, &end);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建weight aclScalar
weight = aclCreateScalar(&weightValue, aclDataType::ACL_FLOAT);
CHECK_RET(weight != nullptr, return ret);
// 3. 调用CANN算子库API
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
// 调用aclnnInplaceLerps第一段接口
ret = aclnnInplaceLerpsGetWorkspaceSize(self, end, weight, &workspaceSize, &executor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnLerpsGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
void* workspaceAddr = nullptr;
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
}
// 调用aclnnInplaceLerps第二段接口
ret = aclnnInplaceLerps(workspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnLerps failed. ERROR: %d\n", ret); return ret);
// 4. (固定写法)同步等待任务执行结束
ret = aclrtSynchronizeStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
// 5. 获取输出的值,将device侧内存上的结果拷贝至host侧
auto size = GetShapeSize(selfShape);
std::vector<float> resultData(size, 0);
ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), selfDeviceAddr,
size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
for (int64_t i = 0; i < size; i++) {
LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]);
}
// 6. 释放aclTensor和aclScalar
aclDestroyTensor(self);
aclDestroyTensor(end);
aclDestroyScalar(weight);
// 7. 释放device资源,需要根据具体API的接口定义修改
aclrtFree(selfDeviceAddr);
aclrtFree(endDeviceAddr);
if (workspaceSize > 0) {
aclrtFree(workspaceAddr);
}
aclrtDestroyStream(stream);
aclrtResetDevice(deviceId);
aclFinalize();
return 0;
}