aclnnMatmulReduceScatter
支持的产品型号
- Atlas A2训练系列产品/Atlas 800I A2推理产品。
说明: 使用该接口时,请确保驱动固件包和CANN包都为配套的8.0.RC2版本或者配套的更高版本,否则将会引发报错,比如BUS ERROR等。
接口原型
每个算子分为两段式接口,必须先调用“aclnnMatmulReduceScatterGetWorkspaceSize”接口获取计算所需workspace大小以及包含了算子计算流程的执行器,再调用“aclnnMatmulReduceScatter”接口执行计算。
aclnnStatus aclnnMatmulReduceScatterGetWorkspaceSize(const aclTensor* x1, const aclTensor* x2, const aclTensor* bias, const char* group, const char* reduceOp, int64_t commTurn, int64_t streamMode, const aclTensor* output, uint64_t* workspaceSize, aclOpExecutor** executor)
aclnnStatus aclnnMatmulReduceScatter(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)
功能描述
- 算子功能:完成mm + reduce_scatter_base计算。
- 计算公式:
aclnnMatmulReduceScatterGetWorkspaceSize
参数说明:
- x1(aclTensor*,计算输入):Device侧的aclTensor,即计算公式中的x1。数据类型支持:FLOAT16、BFLOAT16,且与x2的数据类型保持一致。数据格式支持:ND。当前版本仅支持两维输入,且仅支持不转置场景。
- x2(aclTensor*,计算输入):Device侧的aclTensor,即计算公式中的x2。数据类型支持:FLOAT16、BFLOAT16,且与x1的数据类型保持一致。数据格式支持:ND。支持通过转置构造的非连续的Tensor,例如配合aclnnPermute完成输入转置场景的非连续Tensor转换。当前版本仅支持两维输入。
- bias(aclTensor*,计算输入):Device侧的aclTensor,即计算公式中的bias。数据类型支持:FLOAT16、BFLOAT16。数据格式支持:ND。支持传入空指针的场景。当前版本仅支持一维输入,且暂不支持bias输入为非0的场景。
- group(char*,计算输入):Host侧的char,标识通信域的字符串,通信域名称。数据类型支持:String。通过Hccl提供的接口获取:extern HcclResult HcclGetCommName(HcclComm comm, char* commName);commName即为group。
- reduceOp(char*,计算输入):Host侧的char,reduce操作类型。数据类型支持:String。当前版本仅支持“sum”。
- commTurn(int64_t,计算输入):Host侧的整型,通信数据切分数,即总数据量/单次通信量。数据类型支持:int64_t。当前版本仅支持输入0。
- streamMode(int64_t,计算输入):Host侧的整型,AscendCL流模式的枚举,当前只支持枚举值1,数据类型支持:int64_t。
- output(aclTensor*,计算输出):Device侧的aclTensor,mm计算+reducescatter通信的结果,即计算公式中的output。数据类型支持:FLOAT16、BFLOAT16,且与x1的数据类型保持一致。数据格式支持:ND。
- workspaceSize(uint64_t*,出参):Device侧的整型,返回需要在Device侧申请的workspace大小。
- executor(aclOpExecutor**,出参):Device侧的aclOpExecutor,返回op执行器,包含了算子计算流程。
返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
aclnnMatmulReduceScatter
参数说明:
- workspace(void*,入参):在Device侧申请的workspace内存地址。
- workspaceSize(uint64_t,入参):在Device侧申请的workspace大小,由第一段接口aclnnAllGatherMatmulGetWorkspaceSize获取。
- executor(aclOpExecutor*,入参):op执行器,包含了算子计算流程。
- stream(aclrtStream,入参):指定执行任务的AscendCL stream流。
返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
约束与限制
- 输入x1为2维,其shape为(m, k):
- Atlas A2训练系列产品/Atlas 800I A2推理产品:m须为卡数rank_size的整数倍。
- 输入x2必须是2维,其shape为(k, n),轴满足mm算子入参要求,k轴相等,且k轴取值范围为[256, 65535)。
- x1/x2支持的空tensor场景,m和n可以为空,k不可为空:
- m为空,k不为空,n不为空;
- m不为空,k不为空,n为空;
- m为空,k不为空,n为空。
- x1、x2计算输入的数据类型要和output计算输出的数据类型一致。
- bias暂不支持输入为非0的场景。
- 输出为2维,其shape为(m/rank_size, n), rank_size为卡数。
- Atlas A2训练系列产品/Atlas 800I A2推理产品:支持2、4、8卡,并且仅支持hccs链路all mesh组网。
- 一个模型中的AllGatherMatmul、MatmulReduceScatter或MatmulAllReduce算子,仅支持相同通信域。
调用示例
示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例。
#include <thread>
#include <iostream>
#include <vector>
#include "aclnnop/aclnn_matmul_reduce_scatter.h"
#define CHECK_RET(cond, return_expr) \
do { \
if (!(cond)) { \
return_expr; \
} \
} while (0)
#define LOG_PRINT(message, ...) \
do { \
printf(message, ##__VA_ARGS__); \
} while(0)
constexpr int DEV_NUM = 8;
int64_t GetShapeSize(const std::vector<int64_t> &shape)
{
int64_t shape_size = 1;
for (auto i : shape) {
shape_size *= i;
}
return shape_size;
}
template<typename T>
int CreateAclTensor(const std::vector<T> &hostData, const std::vector<int64_t> &shape, void **deviceAddr,
aclDataType dataType, aclTensor **tensor)
{
auto size = GetShapeSize(shape) * sizeof(T);
auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] aclrtMalloc failed. ret: %d\n", ret); return ret);
ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] aclrtMemcpy failed. ret: %d\n", ret); return ret);
std::vector<int64_t> strides(shape.size(), 1);
for (int64_t i = shape.size() - 2; i >= 0; i--) {
strides[i] = shape[i +1] * strides[i + 1];
}
*tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
shape.data(), shape.size(), *deviceAddr);
return 0;
}
struct Args {
int rankId;
HcclComm hcclComm;
aclrtStream stream;
};
int launchOneThread_MmReduceScatter(Args &args)
{
int ret = aclrtSetDevice(args.rankId);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] aclrtSetDevice failed. ret = %d \n", ret); return ret);
char hcomName[128] = {0};
ret = HcclGetCommName(args.hcclComm, hcomName);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] HcclGetCommName failed. ERROR: %d\n", ret); return -1);
LOG_PRINT("[INFO] rank = %d, hcomName = %s, stream = %p\n", args.rankId, hcomName, args.stream);
std::vector<int64_t> x1Shape = {1024, 256};
std::vector<int64_t> x2Shape = {256, 512};
std::vector<int64_t> biasShape = {512};
std::vector<int64_t> outShape = {1024 / DEV_NUM, 512};
void *x1DeviceAddr = nullptr;
void *x2DeviceAddr = nullptr;
void *biasDeviceAddr = nullptr;
void *outDeviceAddr = nullptr;
aclTensor *x1 = nullptr;
aclTensor *x2 = nullptr;
aclTensor *bias = nullptr;
aclTensor *out = nullptr;
int64_t commTurn = 0;
int64_t streamMode = 1;
uint64_t workspaceSize = 0;
aclOpExecutor *executor = nullptr;
void *workspaceAddr = nullptr;
long long x1ShapeSize = GetShapeSize(x1Shape);
long long x2ShapeSize = GetShapeSize(x2Shape);
long long biasShapeSize = GetShapeSize(biasShape);
long long outShapeSize = GetShapeSize(outShape);
std::vector<int16_t> x1HostData(x1ShapeSize, 0);
std::vector<int16_t> x2HostData(x2ShapeSize, 0);
std::vector<int16_t> biasHostData(biasShapeSize, 0);
std::vector<int16_t> outHostData(outShapeSize, 0);
// 创建tensor
ret = CreateAclTensor(x1HostData, x1Shape, &x1DeviceAddr, aclDataType::ACL_FLOAT16, &x1);
CHECK_RET(ret == ACL_SUCCESS, return ret);
ret = CreateAclTensor(x2HostData, x2Shape, &x2DeviceAddr, aclDataType::ACL_FLOAT16, &x2);
CHECK_RET(ret == ACL_SUCCESS, return ret);
ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT16, &out);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 调用第一阶段接口
ret = aclnnMatmulReduceScatterGetWorkspaceSize(
x1, x2, bias, hcomName, "sum", commTurn, streamMode, out, &workspaceSize, &executor);
CHECK_RET(ret == ACL_SUCCESS,
LOG_PRINT("[ERROR] aclnnMatmulReduceScatterGetWorkspaceSize failed. ret = %d \n", ret); return ret);
// 根据第一阶段接口计算出的workspaceSize申请device内存
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] aclrtMalloc workspace failed. ret = %d \n", ret); return ret);
}
// 调用第二阶段接口
ret = aclnnMatmulReduceScatter(workspaceAddr, workspaceSize, executor, args.stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] aclnnMatmulReduceScatter failed. ret = %d \n", ret); return ret);
// (固定写法)同步等待任务执行结束
ret = aclrtSynchronizeStreamWithTimeout(args.stream, 10000);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] aclrtSynchronizeStreamWithTimeout failed. ret = %d \n", ret);
return ret);
LOG_PRINT("[INFO] device_%d aclnnMatmulReduceScatter execute successfully.\n", args.rankId);
// 释放device资源,需要根据具体API的接口定义修改
if (x1 != nullptr) {
aclDestroyTensor(x1);
}
if (x2 != nullptr) {
aclDestroyTensor(x2);
}
if (bias != nullptr) {
aclDestroyTensor(bias);
}
if (out != nullptr) {
aclDestroyTensor(out);
}
if (x1DeviceAddr != nullptr) {
aclrtFree(x1DeviceAddr);
}
if (x2DeviceAddr != nullptr) {
aclrtFree(x2DeviceAddr);
}
if (biasDeviceAddr != nullptr) {
aclrtFree(biasDeviceAddr);
}
if (outDeviceAddr != nullptr) {
aclrtFree(outDeviceAddr);
}
if (workspaceSize > 0) {
aclrtFree(workspaceAddr);
}
ret = aclrtDestroyStream(args.stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] aclrtDestroyStream failed. ret = %d \n", ret); return ret);
ret = aclrtResetDevice(args.rankId);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] aclrtResetDevice failed. ret = %d \n", ret); return ret);
return 0;
}
int main(int argc, char *argv[])
{
int ret = aclInit(nullptr);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] aclInit failed. ret = %d \n", ret); return ret);
aclrtStream stream[DEV_NUM];
for (uint32_t rankId = 0; rankId < DEV_NUM; rankId++) {
ret = aclrtSetDevice(rankId);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] aclrtSetDevice failed. ret = %d \n", ret); return ret);
ret = aclrtCreateStream(&stream[rankId]);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] aclrtCreateStream failed. ret = %d \n", ret); return ret);
}
int32_t devices[DEV_NUM];
for (int i = 0; i < DEV_NUM; i++) {
devices[i] = i;
}
// 初始化集合通信域
HcclComm comms[DEV_NUM];
ret = HcclCommInitAll(DEV_NUM, devices, comms);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] HcclCommInitAll failed. ret = %d \n", ret); return ret);
Args args[DEV_NUM];
// 启动多线程
std::vector<std::unique_ptr<std::thread>> threads(DEV_NUM);
for (uint32_t rankId = 0; rankId < DEV_NUM; rankId++) {
args[rankId].rankId = rankId;
args[rankId].hcclComm = comms[rankId];
args[rankId].stream = stream[rankId];
threads[rankId].reset(new(std::nothrow) std::thread(&launchOneThread_MmReduceScatter, std::ref(args[rankId])));
}
for (uint32_t rankId = 0; rankId < DEV_NUM; rankId++) {
threads[rankId]->join();
}
for (int i = 0; i < DEV_NUM; i++) {
auto hcclRet = HcclCommDestroy(comms[i]);
CHECK_RET(hcclRet == HCCL_SUCCESS, LOG_PRINT("[ERROR] HcclCommDestory failed. ret = %d \n", ret); return -1);
}
aclFinalize();
return 0;
}