下载
中文
注册
我要评分
文档获取效率
文档正确性
内容完整性
文档易理解
在线提单
论坛求助
昇腾小AI

aclnnMishBackward

支持的产品型号

  • Atlas 推理系列产品。
  • Atlas 训练系列产品。
  • Atlas A2训练系列产品/Atlas 800I A2推理产品。

接口原型

每个算子分为两段式接口 ,必须先调用“aclnnMishBackwardGetWorkspaceSize”接口获取入参并根据计算流程计算所需workspace大小,再调用“aclnnMishBackward”接口执行计算。

  • aclnnStatus aclnnMishBackwardGetWorkspaceSize(const aclTensor* gradOutput, const aclTensor* self, aclTensor* gradInput, uint64_t* workspaceSize, aclOpExecutor** executor)
  • aclnnStatus aclnnMishBackward(void* workspace, uint64_t workspaceSize, aclOpExecutor* executor, aclrtStream stream)

功能描述

  • 算子功能:计算aclnnMish的反向传播过程。

aclnnMishBackwardGetWorkspaceSize

  • 参数说明

    • gradOutput(aclTensor*, 计算输入):反向传播过程中上一步输出的梯度,作为本反向算子的输入,Device侧的aclTensor。数据类型与self的数据类型需满足数据类型推导规则(参见互推导关系),shape需要与self满足broadcast关系。支持非连续的Tensor数据格式支持ND。
      • Atlas 训练系列产品、Atlas 推理系列产品:数据类型支持FLOAT16、FLOAT32。
      • Atlas A2训练系列产品/Atlas 800I A2推理产品:数据类型支持BFLOAT16、FLOAT16、FLOAT32。
    • self(aclTensor*, 计算输入):正向的输入数据,Device侧的aclTensor。且数据类型与gradOutput的数据类型需满足数据类型推导规则(参见互推导关系),shape需要与gradOutput满足broadcast关系。支持非连续的Tensor数据格式支持ND。
      • Atlas 训练系列产品、Atlas 推理系列产品:数据类型支持FLOAT16、FLOAT32。
      • Atlas A2训练系列产品/Atlas 800I A2推理产品:数据类型支持BFLOAT16、FLOAT16、FLOAT32。
    • gradInput(aclTensor*, 计算输出):计算得到梯度,作为反向传播下一步反向算子的计算输入,Device侧的aclTensor。数据类型与gradOutput的数据类型推导规则(参见互推导关系),shape需要与gradOutput满足broadcast关系。支持非连续的Tensor数据格式支持ND。
      • Atlas 训练系列产品、Atlas 推理系列产品:数据类型支持FLOAT16、FLOAT32。
      • Atlas A2训练系列产品/Atlas 800I A2推理产品:数据类型支持BFLOAT16、FLOAT16、FLOAT32。
    • workspaceSize(uint64_t*, 出参): 返回需要在Device侧申请的workspace大小。
    • executor(aclOpExecutor**, 出参): 返回op执行器,包含了算子计算流程。
  • 返回值

    aclnnStatus:返回状态码,具体参见aclnn返回码

    第一段接口完成入参校验,出现以下场景时报错:
    返回161001 (ACLNN_ERR_PARAM_NULLPTR):1. 传入的 gradOutput、self 或 gradInput是空指针时。
    返回161002 (ACLNN_ERR_PARAM_INVALID):1. gradOutput、self 或 gradInput的数据类型不在支持的范围之内。
                                          2. gradOutput 的 shape不能向 self broadcast。
                                          3. gradOutput 或 self 的shape dim 大于 8。

aclnnMishBackward

  • 参数说明

    • workspace(void*, 入参): 在Device侧申请的workspace内存地址。
    • workspaceSize(uint64_t, 入参): 在Device侧申请的workspace大小,由第一段接口aclnnMishBackwardGetWorkspaceSize获取。
    • executor(aclOpExecutor*, 入参): op执行器,包含了算子计算流程。
    • stream(aclrtStream, 入参): 指定执行任务的AscendCL Stream流。
  • 返回值

    aclnnStatus:返回状态码,具体参见aclnn返回码

约束与限制

调用示例

示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例

#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_mish_backward.h"

  
#define CHECK_RET(cond, return_expr) \
  do {                               \
    if (!(cond)) {                   \
      return_expr;                   \
     }                                \
} while (0)

#define LOG_PRINT(message, ...)     \
  do {                              \
   printf(message, ##__VA_ARGS__); \
} while (0)

int64_t GetShapeSize(const std::vector<int64_t>& shape) {
    int64_t shape_size = 1;
    for (auto i : shape) {
    shape_size *= i;
    }
    return shape_size;
}

int Init(int32_t deviceId, aclrtStream* stream) {
  // 固定写法,AscendCL初始化
  auto ret = aclInit(nullptr);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
  ret = aclrtSetDevice(deviceId);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
  ret = aclrtCreateStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
  return 0;
}

template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
                 aclDataType dataType, aclTensor** tensor) {
    auto size = GetShapeSize(shape) * sizeof(T);
    // 调用aclrtMalloc申请Device侧内存
    auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
    // 调用aclrtMemcpy将Host侧数据拷贝到Device侧内存上
    ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
    // 计算连续tensor的strides
    std::vector<int64_t> strides(shape.size(), 1);
    for (int64_t i = shape.size() - 2; i >= 0; i--) {
         strides[i] = shape[i + 1] * strides[i + 1];
    }
    // 调用aclCreateTensor接口创建aclTensor
    *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
                             shape.data(), shape.size(), *deviceAddr);
    return 0;
}

int main() {
  // 1. (固定写法)device/stream初始化, 参考acl对外接口列表
  // 根据自己的实际device填写deviceId
  int32_t deviceId = 0;
  aclrtStream stream;
  auto ret = Init(deviceId, &stream);
  // check根据自己的需要处理
  CHECK_RET(ret == 0, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
  
  // 2. 构造输入与输出,需要根据API的接口自定义构造
  std::vector<int64_t> gradOutputShape = {4, 2};
  std::vector<int64_t> selfShape = {4, 2};
  std::vector<int64_t> gradInputShape = {4, 2};
  void* gradOutputDeviceAddr = nullptr;
  void* selfDeviceAddr = nullptr;
  void* gradInputDeviceAddr = nullptr;
  aclTensor* gradOutput = nullptr;
  aclTensor* self = nullptr;
  aclTensor* gradInput = nullptr;
  std::vector<float> gradOutputHostData = {0, 1, 2, 3, 4, 5, 6, 7};
  std::vector<float> selfHostData = {1, 1, 1, 2, 2, 2, 3, 3};
  std::vector<float> gradInputHostData = {0, 0, 0, 0, 0, 0, 0, 0};
  // 创建gradOutput aclTensor
  ret = CreateAclTensor(gradOutputHostData, gradOutputShape, &gradOutputDeviceAddr, aclDataType::ACL_FLOAT, &gradOutput);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建self aclTensor
  ret = CreateAclTensor(selfHostData, selfShape, &selfDeviceAddr, aclDataType::ACL_FLOAT, &self);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建gradInput aclTensor
  ret = CreateAclTensor(gradInputHostData, gradInputShape, &gradInputDeviceAddr, aclDataType::ACL_FLOAT, &gradInput);
  CHECK_RET(ret == ACL_SUCCESS, return ret);

  // 3. 调用CANN算子库API
  uint64_t workspaceSize = 0;
  aclOpExecutor* executor;
  // 调用aclnnMishBackward第一段接口
  ret = aclnnMishBackwardGetWorkspaceSize(gradOutput, self, gradInput, &workspaceSize, &executor);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnMishBackwardGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
  // 根据第一段接口计算出的workspaceSize申请device内存
  void* workspaceAddr = nullptr;
  if (workspaceSize > 0) {
    ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret;);
  }
  // 调用aclnnMishBackward第二段接口
  ret = aclnnMishBackward(workspaceAddr, workspaceSize, executor, stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnMishBackward failed. ERROR: %d\n", ret); return ret);
  
  // 4. (固定写法)同步等待任务执行结束
  ret = aclrtSynchronizeStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
  
  // 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
  auto size = GetShapeSize(gradInputShape);
  std::vector<float> resultData(size, 0);
  ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), gradInputDeviceAddr, size * sizeof(float),
                    ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
  for (int64_t i = 0; i < size; i++) {
    LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]);
  }

  // 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
  aclDestroyTensor(gradOutput);
  aclDestroyTensor(self);
  aclDestroyTensor(gradInput);

  // 7. 释放device资源,需要根据具体API的接口定义修改
  aclrtFree(gradOutputDeviceAddr);
  aclrtFree(selfDeviceAddr);
  aclrtFree(gradInputDeviceAddr);
  if (workspaceSize > 0) {
    aclrtFree(workspaceAddr);
  }
  aclrtDestroyStream(stream);
  aclrtResetDevice(deviceId);
  aclFinalize();
  return 0;
}
搜索结果
找到“0”个结果

当前产品无相关内容

未找到相关内容,请尝试其他搜索词