下载
中文
注册
我要评分
文档获取效率
文档正确性
内容完整性
文档易理解
在线提单
论坛求助
昇腾小AI

aclnnMv

支持的产品型号

  • Atlas 推理系列产品。
  • Atlas 训练系列产品。
  • Atlas A2训练系列产品/Atlas 800I A2推理产品。

接口定义

每个算子分为两段式接口,必须先调用“aclnnMvGetWorkspaceSize”接口获取计算所需workspace大小以及包含了算子计算流程的执行器,再调用“aclnnMv”接口执行计算。

  • aclnnStatus aclnnMvGetWorkspaceSize(const aclTensor *self, const aclTensor *vec, aclTensor *out, int8_t cubeMathType, uint64_t *workspaceSize, aclOpExecutor **executor)
  • aclnnStatus aclnnMv(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)

功能描述

  • 算子功能:计算矩阵input与向量vec的乘积。

  • 计算公式:

    out=inputvecout = input * vec

    其中inputinput为n*m的二维张量,vecvec为长度为m的一维张量,outout为长度为n的一维张量。

  • 示例:

    a = tensor([[1, 2, 3],
                [4, 5, 6]],dtype=float)
    b = tensor([1, 1, 1], dtype=float)
    c = mv(a, b)
    c: tensor([6, 15],dtype=float)

aclnnMvGetWorkspaceSize

  • 输入参数:

    • self(aclTensor*,计算输入): 公式中的inputinput,数据类型支持FLOAT、FLOAT16。支持非连续的Tensor,shape为n*m的二维张量,数据格式支持ND。
    • vec(aclTensor*,计算输入): 公式中的vecvec,数据类型支持FLOAT、FLOAT16。数据类型与self保持一致,支持非连续的Tensor,shape为长度为m的一维张量,数据格式支持ND。
    • out(aclTensor *,计算输出): 公式中的outout,数据类型支持FLOAT、FLOAT16。且数据类型与self保持一致,支持非连续的Tensor,shape为长度为n的一维张量,数据格式支持ND。
    • cubeMathType(int8,计算输入): 判断Cube单元使用哪种计算逻辑进行运算,数据类型支持INT8,支持的枚举值如下:
      • 0:KEEP_DTYPE,保持输入数据类型进行计算。
        • Atlas 训练系列产品和Atlas 推理系列产品:输入为FLOAT时暂不支持,该值为0时会报错。
      • 1:ALLOW_FP32_DOWN_PRECISION,允许转换输入数据类型降低精度计算。
        • Atlas 训练系列产品和Atlas 推理系列产品:输入是FLOAT时,允许转换为FLOAT16计算。
        • Atlas A2训练系列产品/Atlas 800I A2推理产品:输入是FLOAT时,允许转换为HFLOAT32计算。
      • 2:USE_FP16,允许转换输入数据类型至FLOAT16计算。当输入是FLOAT,允许转换为FLOAT16计算。
      • 3:USE_HF32,允许转换输入数据类型至HFLOAT32计算。当输入是FLOAT16,昇腾AI处理器仍使用FLOAT16计算。
        • Atlas 训练系列产品和Atlas 推理系列产品:输入为FLOAT时暂不支持,取3时会报错。
    • workspaceSize(uint64_t *,出参):返回需要在Device侧申请的workspace大小。
    • executor(aclOpExecutor **,出参):返回op执行器,包含了算子计算流程。
  • 返回值:

    aclnnStatus: 返回状态码,具体参见aclnn返回码

    161001(ACLNN_ERR_PARAM_NULLPTR): 1. 传入的self、vec或out是空指针。
    161002(ACLNN_ERR_PARAM_INVALID): 1. self,vec和out的数据类型和数据格式不在支持的范围之内。
                                     2. self,vec和out的数据类型不同。
                                     3. self,vec和out的shape不符合约束。
                                     4. 传入的cubeMathType不符合约束。

aclnnMv

  • 参数说明:

    • workspace(void *,入参):在Device侧申请的workspace内存地址。
    • workspaceSize(uint64_t,入参):在Device侧申请的workspace大小,由第一段接口aclnnMvGetWorkspaceSize获取。
    • executor(aclOpExecutor *,入参):op执行器,包含了算子计算流程。
    • stream(aclrtStream,入参):指定执行任务的AscendCL Stream流。
  • 返回值:

    aclnnStatus: 返回状态码,具体参见aclnn返回码

约束与限制

  • 无。

调用示例

示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例

#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_mv.h"

#define CHECK_RET(cond, return_expr) \
  do {                               \
    if (!(cond)) {                   \
      return_expr;                   \
    }                                \
  } while (0)

#define LOG_PRINT(message, ...)     \
  do {                              \
    printf(message, ##__VA_ARGS__); \
  } while (0)

int64_t GetShapeSize(const std::vector<int64_t>& shape) {
  int64_t shapeSize = 1;
  for (auto i : shape) {
    shapeSize *= i;
  }
  return shapeSize;
}

int Init(int32_t deviceId, aclrtStream* stream) {
  // 固定写法,AscendCL初始化
  auto ret = aclInit(nullptr);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
  ret = aclrtSetDevice(deviceId);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
  ret = aclrtCreateStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
  return 0;
}

template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
                    aclDataType dataType, aclTensor** tensor) {
  auto size = GetShapeSize(shape) * sizeof(T);
  // 调用aclrtMalloc申请device侧内存
  auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
  // 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
  ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);

  // 计算连续tensor的strides
  std::vector<int64_t> strides(shape.size(), 1);
  for (int64_t i = shape.size() - 2; i >= 0; i--) {
    strides[i] = shape[i + 1] * strides[i + 1];
  }

  // 调用aclCreateTensor接口创建aclTensor
  *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
                            shape.data(), shape.size(), *deviceAddr);
  return 0;
}

int main() {
  // 1. (固定写法)device/stream初始化,参考AscendCL对外接口列表
  // 根据自己的实际device填写deviceId
  int32_t deviceId = 0;
  aclrtStream stream;
  auto ret = Init(deviceId, &stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);

  // 2. 构造输入与输出,需要根据API的接口自定义构造
  std::vector<int64_t> selfShape = {2, 3};
  std::vector<int64_t> vecShape = {3};
  std::vector<int64_t> outShape = {2};
  void* selfDeviceAddr = nullptr;
  void* vecDeviceAddr = nullptr;
  void* outDeviceAddr = nullptr;
  aclTensor* self = nullptr;
  aclTensor* vec = nullptr;
  aclTensor* out = nullptr;
  std::vector<float> selfHostData = {1, 2, 3, 4, 5, 6};
  std::vector<float> vecHostData = {7, 8, 9};
  std::vector<float> outHostData = {0, 0};
  int8_t cubeMathType = 1;
  // 创建self aclTensor
  ret = CreateAclTensor(selfHostData, selfShape, &selfDeviceAddr, aclDataType::ACL_FLOAT, &self);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建vec aclTensor
  ret = CreateAclTensor(vecHostData, vecShape, &vecDeviceAddr, aclDataType::ACL_FLOAT, &vec);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建out aclTensor
  ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT, &out);
  CHECK_RET(ret == ACL_SUCCESS, return ret);

  // 3. 调用CANN算子库API,需要修改为具体的Api名称
  uint64_t workspaceSize = 0;
  aclOpExecutor* executor;
  // 调用aclnnMv第一段接口
  ret = aclnnMvGetWorkspaceSize(self, vec, out, cubeMathType, &workspaceSize, &executor);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnMvGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
  // 根据第一段接口计算出的workspaceSize申请device内存
  void* workspaceAddr = nullptr;
  if (workspaceSize > 0) {
    ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
  }
  // 调用aclnnMv第二段接口
  ret = aclnnMv(workspaceAddr, workspaceSize, executor, stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnMv failed. ERROR: %d\n", ret); return ret);

  // 4. (固定写法)同步等待任务执行结束
  ret = aclrtSynchronizeStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);

  // 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
  auto size = GetShapeSize(outShape);
  std::vector<float> resultData(size, 0);
  ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), outDeviceAddr,
                    size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
  for (int64_t i = 0; i < size; i++) {
    LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]);
  }

  // 6. 释放aclTensor,需要根据具体API的接口定义修改
  aclDestroyTensor(self);
  aclDestroyTensor(vec);
  aclDestroyTensor(out);
  // 7. 释放device资源,需要根据具体API的接口定义参数
  aclrtFree(selfDeviceAddr);
  aclrtFree(vecDeviceAddr);
  aclrtFree(outDeviceAddr);
  if (workspaceSize > 0) {
    aclrtFree(workspaceAddr);
  }
  aclrtDestroyStream(stream);
  aclrtResetDevice(deviceId);
  aclFinalize();
  return 0;
}
搜索结果
找到“0”个结果

当前产品无相关内容

未找到相关内容,请尝试其他搜索词