aclnnQuantMatmulWeightNz
支持的产品型号
- Atlas A2训练系列产品/Atlas 800I A2推理产品
- Atlas 推理系列产品
接口原型
每个算子分为两段式接口,必须先调用“aclnnQuantMatmulWeightNzGetWorkspaceSize”接口获取计算所需workspace大小以及包含了算子计算流程的执行器,再调用“aclnnQuantMatmulWeightNz”接口执行计算。
aclnnStatus aclnnQuantMatmulWeightNzGetWorkspaceSize(const aclTensor *x1, const aclTensor *x2, const aclTensor *x1Scale, const aclTensor *x2Scale, const aclTensor *yScale, const aclTensor *x1Offset, const aclTensor *x2Offset, const aclTensor *yOffset, const aclTensor *bias, bool transposeX1, bool transposeX2, int64_t groupSize, aclTensor *out, uint64_t *workspaceSize, aclOpExecutor **executor)
aclnnStatus aclnnQuantMatmulWeightNz(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)
功能描述
算子功能:完成量化的矩阵乘计算。相似接口有aclnnMm(仅支持2维Tensor作为输入的矩阵乘)和aclnnBatchMatMul(仅支持三维的矩阵乘,其中第一维是Batch维度)。
计算公式:
- 无x1Scale无bias:
- bias int32:
- bias bfloat16/float32(此场景无x2Offset):
- x1Scale无bias:
- x1Scale, bias int32(此场景无x2Offset):
- x1Scale, bias bfloat16/float16/float32(此场景无x2Offset):
aclnnQuantMatmulWeightNzGetWorkspaceSize
参数说明:
- x1(aclTensor*,计算输入):公式中的输入x1,数据类型支持INT8,支持最后两根轴转置情况下的非连续tensor,其他场景的非连续的Tensor不支持,数据格式支持ND,shape最少是2维,最多是6维,在transposeX1为false情况下各个维度表示:(batch,m,k),batch可不存在。
- x2(aclTensor*,计算输入):公式中的输入x2,数据类型支持INT8,支持最后两根轴转置情况下的非连续tensor,其他场景的非连续的Tensor不支持,数据格式支持昇腾亲和数据排布格式。shape最少是4维,最多是8维。在transposeX2为true情况下各个维度表示:(batch,k1,n1, n0, k0),batch可不存在,其中k0 = 32, n0 = 16, x1 shape中的k和x2 shape中的k1需要满足以下关系:ceilDiv(k,32) = k1。在transposeX2为false情况下各个维度表示:(batch,n1,k1, k0, n0),batch可不存在,其中k0 = 16, n0 = 32, x1 shape中的k和x2 shape中的k1需要满足以下关系:ceilDiv(k,16) = k1。 可使用aclnnCalculateMatmulWeightSizeV2接口以及aclnnTransMatmulWeight接口完成输入Format从ND到昇腾亲和数据排布格式的转换。
- x1Scale(aclTensor*,计算输入):公式中的输入x1Scale,可选的量化参数。
- Atlas A2训练系列产品/Atlas 800I A2推理产品:数据类型支持FLOAT32,数据格式支持ND,shape是1维(t,),t = m,其中m与x1的m一致。
- Atlas 推理系列产品:不支持x1Scale。
- x2Scale(aclTensor*,计算输入):公式中的输入x2Scale,量化参数,数据格式支持ND,shape是1维(t,),t = 1或n,其中n与x2的n一致。输出为INT8时,需要提前调用TransQuantParamV2算子的aclnn接口来将x2Scale转成INT64、UINT64数据类型。输出为FLOAT16时,如果x1Scale不为空,可直接将FLOAT32类型的x2Scalel传入本接口;如果x1Scale为空,则需提前调用TransQuantParamV2算子的aclnn接口来将x2Scale转成INT64、UINT64数据类型。
- Atlas A2训练系列产品/Atlas 800I A2推理产品: 数据类型支持UINT64,INT64,FLOAT32,BFLOAT16。输出为BFLOAT16时,直接将BFLOAT16或FLOAT32类型的x2Scale传入本接口。
- Atlas 推理系列产品: 数据类型支持UINT64,INT64。
- yScale(aclTensor*,计算输入):预留参数,当前版本不支持,需要传入nullptr或者空tensor。
- x1Offset(aclTensor*,计算输入):预留参数,当前版本不支持,需要传入nullptr或者空tensor。
- x2Offset(aclTensor*,计算输入):公式中的输入x2Offset,可选量化参数,数据类型支持FLOAT32,数据格式支持ND,shape是1维(t,),t = 1或n,其中n与x2的n一致。
- yOffset(aclTensor*,计算输入):预留参数,当前版本不支持,需要传入nullptr或者空tensor。
- bias(aclTensor*,计算输入):公式中的输入bias,可选参数。数据格式支持ND,shape支持1维(n,)或3维(batch,1,n),n与x2的n一致。当out的shape为2、4、5、6维时,bias的shape只支持1维(n,)。
- Atlas A2训练系列产品/Atlas 800I A2推理产品: 数据类型支持INT32,BFLOAT16,FLOAT16,FLOAT32。
- Atlas 推理系列产品: 数据类型支持INT32。
- transposeX1(bool,计算输入):表示x1的输入shape是否包含transpose,默认是false,若为true,x1的shape表示为(batch,k,m),batch可不存在。
- transposeX2(bool,计算输入):表示x2的输入shape是否包含transpose,默认是false,若为true,x2的shape表示为(batch,n,k),batch可不存在。
- groupSize(int64_t, 计算输入):预留参数,当前版本不支持,需要传入0。
- out(aclTensor*, 计算输出):公式中的输出out,支持非连续的Tensor,数据格式支持ND,shape最少是2维,最多是6维,(batch,m,n),batch可不存在,支持x1与x2的batch维度broadcast,输出batch与broadcast之后的batch一致,m与x1的m一致,n与x2的n一致。
- Atlas A2训练系列产品/Atlas 800I A2推理产品: 数据类型支持FLOAT16,INT8,BFLOAT16,
- Atlas 推理系列产品: 数据类型支持FLOAT16,INT8
- workspaceSize(uint64_t*,出参):返回需要在Device侧申请的workspace大小。
- executor(aclOpExecutor**,出参):返回op执行器,包含了算子计算流程。
返回值:
aclnnStatus:返回状态码,具体参见aclnn返回码。
第一段接口完成入参校验,出现以下场景时报错: - 161001(ACLNN_ERR_PARAM_NULLPTR): 1. 传入的x1、x2、x2Scale或out是空指针。 - 161002(ACLNN_ERR_PARAM_INVALID): 1. x1、x2、bias、x2Scale、x2Offset或out的数据类型和数据格式不在支持的范围之内。 2. x1、x2、bias、x2Scale、x2Offset或out的shape不满足校验条件。 3. x1、x2、bias、x2Scale、x2Offset或out是空tensor。 4. x1与x2的最后一维大小超过65535,x1的最后一维指transposeX1为true时的m或transposeX1为false时的k,x2的最后一维指transposeX2为true时的k或transposeX2为false时的n。 5. 输入的yScale、x1Offset和yOffset不是nullptr并且不是空tensor。 6. groupSize不为0。
aclnnQuantMatmulWeightNz
参数说明:
- workspace(void*, 入参):在Device侧申请的workspace内存地址。
- workspaceSize(uint64_t, 入参):在Device侧申请的workspace大小,由第一段接口aclnnQuantMatmulWeightNzGetWorkspaceSize获取。
- executor(aclOpExecutor*, 入参):op执行器,包含了算子计算流程。
- stream(aclrtStream, 入参):指定执行任务的AscendCL Stream流。
返回值:
aclnnStatus:返回状态码,具体参见aclnn返回码。
约束与限制
输入和输出支持以下数据类型组合:
- Atlas A2训练系列产品/Atlas 800I A2推理产品:
x1 | x2 | x1Scale | x2Scale | x2Offset | bias | out |
---|---|---|---|---|---|---|
int8 | int8 | null | uint64/int64 | null | int32 | float16 |
int8 | int8 | null | uint64/int64 | float32 | int32 | int8 |
int8 | int8 | null/float32 | float32/bfloat16 | null | int32/bfloat16/float32 | bfloat16 |
int8 | int8 | float32 | float32 | null | int32/float16/float32 | float16 |
- Atlas 推理系列产品:
x1 | x2 | x1Scale | x2Scale | x2Offset | bias | out |
---|---|---|---|---|---|---|
int8 | int8 | null | uint64/int64 | null | int32 | float16 |
int8 | int8 | null | uint64/int64 | float32 | int32 | int8 |
调用示例
Atlas A2训练系列产品/Atlas 800I A2推理产品x2为昇腾亲和数据排布格式场景下的示例代码如下(transposeX2=false),仅供参考,具体编译和执行过程请参考编译与运行样例。
#include <memory>
#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_quant_matmul_weight_nz.h"
#include "aclnnop/aclnn_trans_matmul_weight.h"
#include "aclnnop/aclnn_permute.h"
#include "aclnnop/aclnn_trans_quant_param_v2.h"
#define CHECK_RET(cond, return_expr) \
do { \
if (!(cond)) { \
return_expr; \
} \
} while (0)
#define CHECK_FREE_RET(cond, return_expr) \
do { \
if (!(cond)) { \
Finalize(deviceId, stream);\
return_expr; \
} \
} while (0)
#define LOG_PRINT(message, ...) \
do { \
printf(message, ##__VA_ARGS__); \
} while (0)
int64_t GetShapeSize(const std::vector<int64_t>& shape) {
int64_t shapeSize = 1;
for (auto i : shape) {
shapeSize *= i;
}
return shapeSize;
}
int Init(int32_t deviceId, aclrtStream* stream) {
// 固定写法,AscendCL初始化
auto ret = aclInit(nullptr);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
ret = aclrtSetDevice(deviceId);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
ret = aclrtCreateStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
return 0;
}
template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
aclDataType dataType, aclTensor** tensor) {
auto size = GetShapeSize(shape) * sizeof(T);
// 调用aclrtMalloc申请device侧内存
auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
// 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
// 计算连续tensor的strides
std::vector<int64_t> strides(shape.size(), 1);
for (int64_t i = shape.size() - 2; i >= 0; i--) {
strides[i] = shape[i + 1] * strides[i + 1];
}
// 调用aclCreateTensor接口创建aclTensor
*tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
shape.data(), shape.size(), *deviceAddr);
return 0;
}
void Finalize(int32_t deviceId, aclrtStream stream) {
aclrtDestroyStream(stream);
aclrtResetDevice(deviceId);
aclFinalize();
}
template <typename T>
int CreateAclTensorX2(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
aclDataType dataType, aclTensor** tensor) {
auto size = static_cast<uint64_t>(GetShapeSize(shape));
const aclIntArray* mat2Size = aclCreateIntArray(shape.data(), shape.size());
auto ret = aclnnCalculateMatmulWeightSizeV2(mat2Size, dataType, &size);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnCalculateMatmulWeightSizeV2 failed. ERROR: %d\n", ret); return ret);
size *= sizeof(T);
// 调用aclrtMalloc申请device侧内存
ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
// 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
// 计算连续tensor的strides
std::vector<int64_t> strides(shape.size(), 1);
for (int64_t i = shape.size() - 2; i >= 0; i--) {
strides[i] = shape[i + 1] * strides[i + 1];
}
std::vector<int64_t> storageShape;
storageShape.push_back(GetShapeSize(shape));
// 调用aclCreateTensor接口创建aclTensor
*tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
storageShape.data(), storageShape.size(), *deviceAddr);
return 0;
}
int aclnnQuantMatmulWeightNzTest(int32_t deviceId, aclrtStream &stream){
auto ret = Init(deviceId, &stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
// 2. 构造输入与输出,需要根据API的接口自定义构造
std::vector<int64_t> x1Shape = {5, 32};
std::vector<int64_t> x2Shape = {32, 32};
std::vector<int64_t> biasShape = {32};
std::vector<int64_t> offsetShape = {32};
std::vector<int64_t> scaleShape = {32};
std::vector<int64_t> outShape = {5, 32};
void* x1DeviceAddr = nullptr;
void* x2DeviceAddr = nullptr;
void* scaleDeviceAddr = nullptr;
void* quantParamDeviceAddr = nullptr;
void* offsetDeviceAddr = nullptr;
void* biasDeviceAddr = nullptr;
void* outDeviceAddr = nullptr;
aclTensor* x1 = nullptr;
aclTensor* x2 = nullptr;
aclTensor* bias = nullptr;
aclTensor* scale = nullptr;
aclTensor* quantParam = nullptr;
aclTensor* offset = nullptr;
aclTensor* out = nullptr;
std::vector<int8_t> x1HostData(5 * 32, 1);
std::vector<int8_t> x2HostData(32 * 32 , 1);
std::vector<int32_t> biasHostData(32, 1);
std::vector<float> scaleHostData(32, 1);
std::vector<float> offsetHostData(32, 1);
std::vector<uint16_t> outHostData(5 * 32, 1); // 实际上是float16半精度方式
// 创建x1 aclTensor
ret = CreateAclTensor(x1HostData, x1Shape, &x1DeviceAddr, aclDataType::ACL_INT8, &x1);
std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> x1TensorPtr(x1, aclDestroyTensor);
std::unique_ptr<void, aclError (*)(void *)> x1DeviceAddrPtr(x1DeviceAddr, aclrtFree);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建昇腾亲和数据排布格式的x2 aclTensor
ret = CreateAclTensorX2(x2HostData, x2Shape, &x2DeviceAddr, aclDataType::ACL_INT8, &x2);
std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> x2HPTensorPtr(x2, aclDestroyTensor);
std::unique_ptr<void, aclError (*)(void *)> x2HPDeviceAddrPtr(x2DeviceAddr, aclrtFree);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建scale aclTensor
ret = CreateAclTensor(scaleHostData, scaleShape, &scaleDeviceAddr, aclDataType::ACL_FLOAT, &scale);
std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> scaleTensorPtr(scale, aclDestroyTensor);
std::unique_ptr<void, aclError (*)(void *)> scaleDeviceAddrPtr(scaleDeviceAddr, aclrtFree);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建quantParam aclTensor
ret = CreateAclTensor(scaleHostData, scaleShape, &quantParamDeviceAddr, aclDataType::ACL_UINT64, &quantParam);
std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> quantParamTensorPtr(quantParam, aclDestroyTensor);
std::unique_ptr<void, aclError (*)(void *)> quantParamDeviceAddrPtr(quantParamDeviceAddr, aclrtFree);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建offset aclTensor
ret = CreateAclTensor(offsetHostData, offsetShape, &offsetDeviceAddr, aclDataType::ACL_FLOAT, &offset);
std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> offsetTensorPtr(offset, aclDestroyTensor);
std::unique_ptr<void, aclError (*)(void *)> offsetDeviceAddrPtr(offsetDeviceAddr, aclrtFree);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建bias aclTensor
ret = CreateAclTensor(biasHostData, biasShape, &biasDeviceAddr, aclDataType::ACL_INT32, &bias);
std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> biasTensorPtr(bias, aclDestroyTensor);
std::unique_ptr<void, aclError (*)(void *)> biasDeviceAddrPtr(biasDeviceAddr, aclrtFree);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建out aclTensor
ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT16, &out);
std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> outTensorPtr(out, aclDestroyTensor);
std::unique_ptr<void, aclError (*)(void *)> outDeviceAddrPtr(outDeviceAddr, aclrtFree);
CHECK_RET(ret == ACL_SUCCESS, return ret);
bool transposeX1 = false;
bool transposeX2 = false;
// 3. 调用CANN算子库API,需要修改为具体的Api名称
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
// 调用aclnnTransMatmulWeight第一段接口
ret = aclnnTransMatmulWeightGetWorkspaceSize(x2, &workspaceSize, &executor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnTransMatmulWeightGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
std::unique_ptr<void, aclError (*)(void *)> workspaceAddrPtrTrans(nullptr, aclrtFree);
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
workspaceAddrPtrTrans.reset(workspaceAddr);
}
// 调用aclnnTransMatmulWeight第二段接口
ret = aclnnTransMatmulWeight(workspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnTransMatmulWeight failed. ERROR: %d\n", ret); return ret);
// FLOAT数据类型的scale需要提前调用TransQuantParamV2算子的aclnn接口
// 调用aclnnaclnnTransQuantParamV2第一段接口
ret = aclnnTransQuantParamV2GetWorkspaceSize(scale, offset, quantParam, &workspaceSize, &executor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnTransQuantParamV2GetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
workspaceAddr = nullptr;
std::unique_ptr<void, aclError (*)(void *)> workspaceAddrPtrV2(nullptr, aclrtFree);
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
workspaceAddrPtrV2.reset(workspaceAddr);
}
// 调用aclnnTransQuantParamV2第二段接口
ret = aclnnTransQuantParamV2(workspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnTransQuantParamV2 failed. ERROR: %d\n", ret); return ret);
// 调用aclnnQuantMatmulWeightNz第一段接口, Atlas 推理系列产品暂时不支持x1Scale
workspaceSize = 0;
ret = aclnnQuantMatmulWeightNzGetWorkspaceSize(x1, x2, nullptr, quantParam, nullptr, nullptr, nullptr, nullptr, bias, transposeX1, transposeX2, 0, out, &workspaceSize, &executor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnQuantMatmulWeightNzGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
std::unique_ptr<void, aclError (*)(void *)> workspaceAddrPtrNZ(nullptr, aclrtFree);
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
workspaceAddrPtrNZ.reset(workspaceAddr);
}
// 调用aclnnQuantMatmulWeightNz第二段接口
ret = aclnnQuantMatmulWeightNz(workspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnQuantMatmulWeightNz failed. ERROR: %d\n", ret); return ret);
// 4. (固定写法)同步等待任务执行结束
ret = aclrtSynchronizeStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
// 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
auto size = GetShapeSize(outShape);
std::vector<uint16_t> resultData(size, 0); // C语言中无法直接打印fp16的数据,需要用uint16读出来,自行通过二进制转成fp16
ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), outDeviceAddr,
size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
for (int64_t i = 0; i < size; i++) {
LOG_PRINT("result[%ld] is: %u\n", i, resultData[i]);
}
return ACL_SUCCESS;
}
int main() {
// 1. (固定写法)device/stream初始化,参考AscendCL对外接口列表
// 根据自己的实际device填写deviceId
int32_t deviceId = 0;
aclrtStream stream;
auto ret = aclnnQuantMatmulWeightNzTest(deviceId, stream);
CHECK_FREE_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnQuantMatmulWeightNzTest failed. ERROR: %d\n", ret); return ret);
Finalize(deviceId, stream);
return 0;
}
Atlas 推理系列产品x2为昇腾亲和数据排布格式场景下的示例代码如下(transposeX2=true),仅供参考,具体编译和执行过程请参考编译与运行样例。
#include <memory>
#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_quant_matmul_weight_nz.h"
#include "aclnnop/aclnn_trans_matmul_weight.h"
#include "aclnnop/aclnn_permute.h"
#include "aclnnop/aclnn_trans_quant_param_v2.h"
#define CHECK_RET(cond, return_expr) \
do { \
if (!(cond)) { \
return_expr; \
} \
} while (0)
#define CHECK_FREE_RET(cond, return_expr) \
do { \
if (!(cond)) { \
Finalize(deviceId, stream);\
return_expr; \
} \
} while (0)
#define LOG_PRINT(message, ...) \
do { \
printf(message, ##__VA_ARGS__); \
} while (0)
int64_t GetShapeSize(const std::vector<int64_t>& shape) {
int64_t shapeSize = 1;
for (auto i : shape) {
shapeSize *= i;
}
return shapeSize;
}
int Init(int32_t deviceId, aclrtStream* stream) {
// 固定写法,AscendCL初始化
auto ret = aclInit(nullptr);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
ret = aclrtSetDevice(deviceId);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
ret = aclrtCreateStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
return 0;
}
template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
aclDataType dataType, aclTensor** tensor) {
auto size = GetShapeSize(shape) * sizeof(T);
// 调用aclrtMalloc申请device侧内存
auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
// 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
// 计算连续tensor的strides
std::vector<int64_t> strides(shape.size(), 1);
for (int64_t i = shape.size() - 2; i >= 0; i--) {
strides[i] = shape[i + 1] * strides[i + 1];
}
// 调用aclCreateTensor接口创建aclTensor
*tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
shape.data(), shape.size(), *deviceAddr);
return 0;
}
void Finalize(int32_t deviceId, aclrtStream stream) {
aclrtDestroyStream(stream);
aclrtResetDevice(deviceId);
aclFinalize();
}
template <typename T>
int CreateAclTensorX2(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
aclDataType dataType, aclTensor** tensor) {
auto size = static_cast<uint64_t>(GetShapeSize(shape));
const aclIntArray* mat2Size = aclCreateIntArray(shape.data(), shape.size());
auto ret = aclnnCalculateMatmulWeightSizeV2(mat2Size, dataType, &size);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnCalculateMatmulWeightSizeV2 failed. ERROR: %d\n", ret); return ret);
size *= sizeof(T);
// 调用aclrtMalloc申请device侧内存
ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
// 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
// 计算连续tensor的strides
std::vector<int64_t> strides(shape.size(), 1);
for (int64_t i = shape.size() - 2; i >= 0; i--) {
strides[i] = shape[i + 1] * strides[i + 1];
}
std::vector<int64_t> storageShape;
storageShape.push_back(GetShapeSize(shape));
// 调用aclCreateTensor接口创建aclTensor
*tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
storageShape.data(), storageShape.size(), *deviceAddr);
return 0;
}
int aclnnQuantMatmulWeightNzTest(int32_t deviceId, aclrtStream &stream){
auto ret = Init(deviceId, &stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
// 2. 构造输入与输出,需要根据API的接口自定义构造
std::vector<int64_t> x1Shape = {5, 32};
std::vector<int64_t> x2Shape = {32, 32};
std::vector<int64_t> x2TransposedShape = {32, 32};
std::vector<int64_t> biasShape = {32};
std::vector<int64_t> offsetShape = {32};
std::vector<int64_t> scaleShape = {32};
std::vector<int64_t> outShape = {5, 32};
void* x1DeviceAddr = nullptr;
void* x2DeviceAddr = nullptr;
void* x2TransposedDeviceAddr = nullptr;
void* scaleDeviceAddr = nullptr;
void* quantParamDeviceAddr = nullptr;
void* offsetDeviceAddr = nullptr;
void* biasDeviceAddr = nullptr;
void* outDeviceAddr = nullptr;
aclTensor* x1 = nullptr;
aclTensor* x2 = nullptr;
aclTensor* x2Transposed = nullptr;
aclTensor* bias = nullptr;
aclTensor* scale = nullptr;
aclTensor* quantParam = nullptr;
aclTensor* offset = nullptr;
aclTensor* out = nullptr;
std::vector<int8_t> x1HostData(5 * 32, 1);
std::vector<int8_t> x2HostData(32 * 32, 1);
std::vector<int8_t> x2TransposedHostData(32 * 32, 1);
std::vector<int32_t> biasHostData(32, 1);
std::vector<float> scaleHostData(32, 1);
std::vector<float> offsetHostData(32, 1);
std::vector<uint16_t> outHostData(5 * 32, 1); // 实际上是float16半精度方式
// 创建x1 aclTensor
ret = CreateAclTensor(x1HostData, x1Shape, &x1DeviceAddr, aclDataType::ACL_INT8, &x1);
std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> x1TensorPtr(x1, aclDestroyTensor);
std::unique_ptr<void, aclError (*)(void *)> x1DeviceAddrPtr(x1DeviceAddr, aclrtFree);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建昇腾亲和数据排布格式的x2 aclTensor
ret = CreateAclTensorX2(x2HostData, x2Shape, &x2DeviceAddr, aclDataType::ACL_INT8, &x2);
std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> x2HPTensorPtr(x2, aclDestroyTensor);
std::unique_ptr<void, aclError (*)(void *)> x2HPDeviceAddrPtr(x2DeviceAddr, aclrtFree);
CHECK_RET(ret == ACL_SUCCESS, return ret);
//创建昇腾亲和数据排布格式的x2Transposed aclTensor
ret = CreateAclTensorX2(x2TransposedHostData, x2TransposedShape, &x2TransposedDeviceAddr, aclDataType::ACL_INT8, &x2Transposed);
std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> x2TransposedHPTensorPtr(x2Transposed, aclDestroyTensor);
std::unique_ptr<void, aclError (*)(void *)> x2TransposedHPDeviceAddrPtr(x2TransposedDeviceAddr, aclrtFree);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建scale aclTensor
ret = CreateAclTensor(scaleHostData, scaleShape, &scaleDeviceAddr, aclDataType::ACL_FLOAT, &scale);
std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> scaleTensorPtr(scale, aclDestroyTensor);
std::unique_ptr<void, aclError (*)(void *)> scaleDeviceAddrPtr(scaleDeviceAddr, aclrtFree);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建quantParam aclTensor
ret = CreateAclTensor(scaleHostData, scaleShape, &quantParamDeviceAddr, aclDataType::ACL_UINT64, &quantParam);
std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> quantParamTensorPtr(quantParam, aclDestroyTensor);
std::unique_ptr<void, aclError (*)(void *)> quantParamDeviceAddrPtr(quantParamDeviceAddr, aclrtFree);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建offset aclTensor
ret = CreateAclTensor(offsetHostData, offsetShape, &offsetDeviceAddr, aclDataType::ACL_FLOAT, &offset);
std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> offsetTensorPtr(offset, aclDestroyTensor);
std::unique_ptr<void, aclError (*)(void *)> offsetDeviceAddrPtr(offsetDeviceAddr, aclrtFree);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建bias aclTensor
ret = CreateAclTensor(biasHostData, biasShape, &biasDeviceAddr, aclDataType::ACL_INT32, &bias);
std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> biasTensorPtr(bias, aclDestroyTensor);
std::unique_ptr<void, aclError (*)(void *)> biasDeviceAddrPtr(biasDeviceAddr, aclrtFree);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建out aclTensor
ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT16, &out);
std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> outTensorPtr(out, aclDestroyTensor);
std::unique_ptr<void, aclError (*)(void *)> outDeviceAddrPtr(outDeviceAddr, aclrtFree);
CHECK_RET(ret == ACL_SUCCESS, return ret);
bool transposeX1 = false;
bool transposeX2 = true;
// 3. 调用CANN算子库API,需要修改为具体的Api名称
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
// x2的shape需要transpose成nk格式,再进行transdata
std::vector<int64_t> dimsData = {1, 0};
// 创建dims aclIntArray
aclIntArray *dims = aclCreateIntArray(dimsData.data(), dimsData.size());
// 调用aclnnPermute第一段接口
ret = aclnnPermuteGetWorkspaceSize(x2, dims, x2Transposed, &workspaceSize, &executor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnPermuteGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
std::unique_ptr<void, aclError (*)(void *)> workspaceAddrPtrPermute(nullptr, aclrtFree);
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
workspaceAddrPtrPermute.reset(workspaceAddr);
}
// 调用aclnnPermute第二段接口
ret = aclnnPermute(workspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnPermuteGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
workspaceSize = 0;
// 调用aclnnTransMatmulWeight第一段接口
ret = aclnnTransMatmulWeightGetWorkspaceSize(x2Transposed, &workspaceSize, &executor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnTransMatmulWeightGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
std::unique_ptr<void, aclError (*)(void *)> workspaceAddrPtrTrans(nullptr, aclrtFree);
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
workspaceAddrPtrTrans.reset(workspaceAddr);
}
// 调用aclnnTransMatmulWeight第二段接口
ret = aclnnTransMatmulWeight(workspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnTransMatmulWeight failed. ERROR: %d\n", ret); return ret);
// FLOAT数据类型的scale需要提前调用TransQuantParamV2算子的aclnn接口
// 调用aclnnaclnnTransQuantParamV2第一段接口
ret = aclnnTransQuantParamV2GetWorkspaceSize(scale, offset, quantParam, &workspaceSize, &executor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnTransQuantParamV2GetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
workspaceAddr = nullptr;
std::unique_ptr<void, aclError (*)(void *)> workspaceAddrPtrV2(nullptr, aclrtFree);
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
workspaceAddrPtrV2.reset(workspaceAddr);
}
// 调用aclnnTransQuantParamV2第二段接口
ret = aclnnTransQuantParamV2(workspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnTransQuantParamV2 failed. ERROR: %d\n", ret); return ret);
// 调用aclnnQuantMatmulWeightNz第一段接口, Atlas 推理系列产品暂时不支持x1Scale
workspaceSize = 0;
ret = aclnnQuantMatmulWeightNzGetWorkspaceSize(x1, x2Transposed, nullptr, quantParam, nullptr, nullptr, nullptr, nullptr, bias, transposeX1, transposeX2, 0, out, &workspaceSize, &executor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnQuantMatmulWeightNzGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
std::unique_ptr<void, aclError (*)(void *)> workspaceAddrPtrNZ(nullptr, aclrtFree);
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
workspaceAddrPtrNZ.reset(workspaceAddr);
}
// 调用aclnnQuantMatmulWeightNz第二段接口
ret = aclnnQuantMatmulWeightNz(workspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnQuantMatmulWeightNz failed. ERROR: %d\n", ret); return ret);
// 4. (固定写法)同步等待任务执行结束
ret = aclrtSynchronizeStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
// 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
auto size = GetShapeSize(outShape);
std::vector<uint16_t> resultData(size, 0); // C语言中无法直接打印fp16的数据,需要用uint16读出来,自行通过二进制转成fp16
ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), outDeviceAddr,
size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
for (int64_t i = 0; i < size; i++) {
LOG_PRINT("result[%ld] is: %u\n", i, resultData[i]);
}
return ACL_SUCCESS;
}
int main() {
// 1. (固定写法)device/stream初始化,参考AscendCL对外接口列表
// 根据自己的实际device填写deviceId
int32_t deviceId = 0;
aclrtStream stream;
auto ret = aclnnQuantMatmulWeightNzTest(deviceId, stream);
CHECK_FREE_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnQuantMatmulWeightNzTest failed. ERROR: %d\n", ret); return ret);
Finalize(deviceId, stream);
return 0;
}