aclnnReflectionPad2dBackward
支持的产品型号
- Atlas 推理系列产品。
- Atlas 训练系列产品。
- Atlas A2训练系列产品/Atlas 800I A2推理产品。
接口原型
每个算子分为两段式接口,必须先调用“aclnnReflectionPad2dBackwardGetWorkspaceSize”接口获取计算所需workspace大小以及包含了算子计算流程的执行器,再调用“aclnnReflectionPad2dBackward”接口执行计算。
aclnnStatus aclnnReflectionPad2dBackwardGetWorkspaceSize(const aclTensor *gradOutput, const aclTensor *self, const aclIntArray *padding, aclTensor *gradInput, uint64_t *workspaceSize, aclOpExecutor **executor)
aclnnStatus aclnnReflectionPad2dBackward(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)
功能描述
算子功能:reflection_pad2d的反向传播,前向计算参考[aclnnReflectionPad2d]。
示例:
输入gradOutput([[[1, 1, 1, 1, 1, 1, 1]]]) self([[[1, 1, 1, 1, 1]]]) padding([1, 1, 0, 0]) 输出为([[1, 2, 1, 2, 1]])
aclnnReflectionPad2dBackwardGetWorkspaceSize
参数说明:
- gradOutput(aclTensor*, 计算输入): 输入的梯度,Device侧的aclTensor,数据类型支持FLOAT16, FLOAT, DOUBLE, COMPLEX64, COMPLEX128,数据类型与self一致,支持非连续的Tensor,数据格式支持ND,shape支持3-4维且维度需要与self和gradInput一致,shape需要与reflection_pad2d正向传播的output一致。
- self(aclTensor*, 计算输入):正向计算时需要进行填充的tensor,数据类型支持FLOAT16, FLOAT, DOUBLE, COMPLEX64, COMPLEX128,Device侧的aclTensor,支持非连续的Tensor,数据格式支持ND,shape支持3-4维且维度需要与gradOutput和gradInput一致,shape与gradInput一致。
- padding(aclIntArray*, 计算输入):填充范围,Device侧的aclIntArray数组,数据类型为INT64,长度为4。padding前两维度的数值都需小于self最后一维度的数值,后两维度的数值需小于self倒数第二维度的数值。
- gradInput(aclTensor*, 计算输出):计算得到的self的梯度,Device侧的aclTensor,数据类型支持FLOAT16, FLOAT, DOUBLE, COMPLEX64, COMPLEX128,数据类型与self一致,shape与self一致,支持非连续的Tensor,数据格式支持ND,shape支持3-4维且与gradOutput和self一致,shape与self一致。
- workspaceSize(uint64_t*, 出参):返回需要在Device侧申请的workspace大小。
- executor(aclOpExecutor**, 出参):返回op执行器,包含了算子计算流程。
返回值:
aclnnStatus:返回状态码,具体参见aclnn返回码。
第一段接口完成入参校验,出现如下场景时报错: 返回161001(ACLNN_ERR_PARAM_NULLPTR):1. gradOutput, self, padding, gradInput任何一个为空指针。 返回161002(ACLNN_ERR_PARAM_INVALID):1. gradOutput、self、padding和gradInput的数据类型或数据格式不在支持的范围之内。 2. gradOutput、self、padding和gradInput的输入shape在支持范围之外。 3. self为空tensor且存在非第一维度的值为0。 4. padding内的数值大于等于self的维度。 5. gradOutput shape需要与reflection_pad2d正向传播的output一致。
aclnnReflectionPad2dBackward
参数说明:
- workspace(void*, 入参):在Device侧申请的workspace内存地址。
- workspaceSize(uint64_t, 入参):在Device侧申请的workspace大小,由第一段接口aclnnReflectionPad2dBackwardGetWorkspaceSize获取。
- executor(aclOpExecutor*, 入参):op执行器,包含了算子计算流程。
- stream(aclrtStream, 入参):指定执行任务的AscendCL Stream流。
返回值:
aclnnStatus:返回状态码,具体参见aclnn返回码。
约束与限制
无。
调用示例
示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例。
#include "acl/acl.h"
#include "aclnnop/aclnn_pad2d_backward.h"
#include <iostream>
#include <vector>
#define CHECK_RET(cond, return_expr) \
do { \
if (!(cond)) { \
return_expr; \
} \
} while (0)
#define LOG_PRINT(message, ...) \
do { \
printf(message, ##__VA_ARGS__); \
} while (0)
int64_t GetShapeSize(const std::vector<int64_t>& shape) {
int64_t shape_size = 1;
for (auto i : shape) {
shape_size *= i;
}
return shape_size;
}
int Init(int32_t deviceId, aclrtStream* stream) {
// 固定写法,AscendCL初始化
auto ret = aclInit(nullptr);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
ret = aclrtSetDevice(deviceId);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
ret = aclrtCreateStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
return 0;
}
template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
aclDataType dataType, aclTensor** tensor) {
auto size = GetShapeSize(shape) * sizeof(T);
// 调用aclrtMalloc申请device侧内存
auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
// 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
// 计算连续tensor的strides
std::vector<int64_t> strides(shape.size(), 1);
for (int64_t i = shape.size() - 2; i >= 0; i--) {
strides[i] = shape[i + 1] * strides[i + 1];
}
// 调用aclCreateTensor接口创建aclTensor
*tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
shape.data(), shape.size(), *deviceAddr);
return 0;
}
int main() {
// 1. 固定写法,device/stream初始化, 参考AscendCL对外接口列表
// 根据自己的实际device填写deviceId
int32_t deviceId = 0;
aclrtStream stream;
auto ret = Init(deviceId, &stream);
// check根据自己的需要处理
CHECK_RET(ret == 0, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
// 2. 构造输入与输出,需要根据API的接口定义构造
std::vector<int64_t> gradOutputShape = {1, 1, 4, 4};
std::vector<int64_t> selfShape = {1, 1, 2, 2};
std::vector<int64_t> gradInputShape = {1, 1, 2, 2};
void* gradOutputDeviceAddr = nullptr;
void* selfDeviceAddr = nullptr;
void* gradInputDeviceAddr = nullptr;
aclTensor* gradOutput = nullptr;
aclTensor* self = nullptr;
aclIntArray* padding = nullptr;
aclTensor* gradInput = nullptr;
std::vector<float> gradOutputHostData = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
std::vector<float> selfHostData = {1, 2, 3, 4};
std::vector<int64_t> paddingData = {1, 1, 1, 1};
std::vector<float> gradInputHostData = {0, 0, 0, 0};
// 创建gradOutput aclTensor
ret = CreateAclTensor(gradOutputHostData, gradOutputShape, &gradOutputDeviceAddr, aclDataType::ACL_FLOAT, &gradOutput);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建self aclTensor
ret = CreateAclTensor(selfHostData, selfShape, &selfDeviceAddr, aclDataType::ACL_FLOAT, &self);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建padding aclIntArray
padding = aclCreateIntArray(paddingData.data(), 4);
CHECK_RET(padding != nullptr, return ret);
// 创建gradInput aclTensor
ret = CreateAclTensor(gradInputHostData, gradInputShape, &gradInputDeviceAddr, aclDataType::ACL_FLOAT, &gradInput);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 3. 调用CANN算子库API,需要修改为具体的API
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
// 调用aclnnReflectionPad2dBackward第一段接口
ret = aclnnReflectionPad2dBackwardGetWorkspaceSize(gradOutput, self, padding, gradInput, &workspaceSize, &executor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnReflectionPad2dBackwardGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
void* workspaceAddr = nullptr;
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret;);
}
// 调用aclnnReflectionPad2dBackward第二段接口
ret = aclnnReflectionPad2dBackward(workspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnReflectionPad2dBackward failed. ERROR: %d\n", ret); return ret);
// 4. 固定写法,同步等待任务执行结束
ret = aclrtSynchronizeStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
// 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
auto size = GetShapeSize(gradInputShape);
std::vector<float> resultData(size, 0);
ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), gradInputDeviceAddr, size * sizeof(float),
ACL_MEMCPY_DEVICE_TO_HOST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
for (int64_t i = 0; i < size; i++) {
LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]);
}
// 6. 释放aclTensor,需要根据具体API的接口定义修改
aclDestroyTensor(gradOutput);
aclDestroyTensor(self);
aclDestroyIntArray(padding);
aclDestroyTensor(gradInput);
// 7. 释放device资源,需要根据具体API的接口定义修改
aclrtFree(gradOutputDeviceAddr);
aclrtFree(selfDeviceAddr);
aclrtFree(gradInputDeviceAddr);
if (workspaceSize > 0) {
aclrtFree(workspaceAddr);
}
aclrtDestroyStream(stream);
aclrtResetDevice(deviceId);
aclFinalize();
return 0;
}