aclnnRoundDecimals&aclnnInplaceRoundDecimals
支持的产品型号
- Atlas 训练系列产品。
- Atlas A2训练系列产品/Atlas 800I A2推理产品。
接口原型
aclnnRoundDecimals和aclnnInplaceRoundDecimals实现相同的功能,使用区别如下,请根据自身实际场景选择合适的算子。
- aclnnRoundDecimals:需新建一个输出张量对象存储计算结果。
- aclnnInplaceRoundDecimals:无需新建输出张量对象,直接在输入张量的内存中存储计算结果。
每个算子分为两段式接口,必须先调用“aclnnRoundDecimalsGetWorkspaceSize”或者“aclnnInplaceRoundDecimalsGetWorkspaceSize”接口获取计算所需workspace大小以及包含了算子计算流程的执行器,再调用“aclnnRoundDecimals”或者“aclnnInplaceRoundDecimals”接口执行计算。
aclnnStatus aclnnRoundDecimalsGetWorkspaceSize(const aclTensor* self, int64_t decimals, aclTensor* out, uint64_t* workspaceSize, aclOpExecutor** executor)
aclnnStatus aclnnRoundDecimals(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)
aclnnStatus aclnnInplaceRoundDecimalsGetWorkspaceSize(aclTensor* selfRef, int64_t decimals, uint64_t* workspaceSize, aclOpExecutor** executor)
aclnnStatus aclnnInplaceRoundDecimals(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)
功能描述
算子功能:将输入Tensor的元素四舍五入到指定的位数。
aclnnRoundDecimalsGetWorkspaceSize
参数说明:
self(aclTensor*, 计算输入):输入Tensor,Device侧的aclTensor,支持非连续的Tensor,数据格式支持ND,维度不大于8,且shape需要与out一致。
- Atlas 训练系列产品:数据类型支持FLOAT、FLOAT16、DOUBLE、INT32、INT64。
- Atlas A2训练系列产品/Atlas 800I A2推理产品:数据类型支持FLOAT、BFLOAT16、FLOAT16、DOUBLE、INT32、INT64。
decimals(int64_t, 计算输入):指定需要四舍五入的位数。
out(aclTensor *, 计算输出):输出Tensor,Device侧的aclTensor,支持非连续的Tensor,数据格式支持ND,维度不大于8,且shape需要与self一致。
- Atlas 训练系列产品:数据类型支持FLOAT、FLOAT16、DOUBLE、INT32、INT64。
- Atlas A2训练系列产品/Atlas 800I A2推理产品:数据类型支持FLOAT、BFLOAT16、FLOAT16、DOUBLE、INT32、INT64。
workspaceSize(uint64_t *, 出参):返回需要在Device侧申请的workspace大小。
executor(aclOpExecutor **, 出参):返回op执行器,包含了算子计算流程。
返回值:
aclnnStatus:返回状态码,具体参见aclnn返回码。
161001 ACLNN_ERR_PARAM_NULLPTR:1. 传入的self或out是空指针。
161002 ACLNN_ERR_PARAM_INVALID:1. self或out的数据类型不在支持的范围之内。
2. self和out的数据类型不一致。
3. self和out的shape不一致。
4. self或out的维数大于8。
aclnnRoundDecimals
参数说明:
workspace(void *, 入参):在Device侧申请的workspace内存地址。
workspaceSize(uint64_t, 入参):在Device侧申请的workspace大小,由第一段接口aclnnRoundDecimalsGetWorkspaceSize获取。
executor(aclOpExecutor *, 入参):op执行器,包含了算子计算流程。
stream(aclrtStream, 入参):指定执行任务的AscendCL Stream流。
返回值:
aclnnStatus:返回状态码,具体参见aclnn返回码。
aclnnInplaceRoundDecimalsGetWorkspaceSize
参数说明:
selfRef(aclTensor*, 计算输入):输入Tensor,Device侧的aclTensor,支持非连续的Tensor,数据格式支持ND,维度不大于8。
- Atlas 训练系列产品:数据类型支持FLOAT、FLOAT16、DOUBLE、INT32、INT64。
- Atlas A2训练系列产品/Atlas 800I A2推理产品:数据类型支持FLOAT、BFLOAT16、FLOAT16、DOUBLE、INT32、INT64。
decimals(int64_t, 计算输入):指定需要四舍五入的位数。
workspaceSize(uint64_t *, 出参):返回需要在Device侧申请的workspace大小。
executor(aclOpExecutor **, 出参):返回op执行器,包含了算子计算流程。
返回值:
aclnnStatus:返回状态码,具体参见aclnn返回码。
161001 ACLNN_ERR_PARAM_NULLPTR:1. 传入的selfRef是空指针。
161002 ACLNN_ERR_PARAM_INVALID:1. selfRef的数据类型不在支持的范围之内。
2. selfRef的维数大于8。
aclnnInplaceRoundDecimals
参数说明:
workspace(void *, 入参):在Device侧申请的workspace内存地址。
workspaceSize(uint64_t, 入参):在Device侧申请的workspace大小,由第一段接口aclnnInplaceRoundDecimalsGetWorkspaceSize获取。
executor(aclOpExecutor *, 入参):op执行器,包含了算子计算流程。
stream(aclrtStream, 入参):指定执行任务的AscendCL Stream流。
返回值:
aclnnStatus:返回状态码,具体参见aclnn返回码。
约束与限制
无。
调用示例
示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例。
#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_round.h"
#define CHECK_RET(cond, return_expr) \
do { \
if (!(cond)) { \
return_expr; \
} \
} while (0)
#define LOG_PRINT(message, ...) \
do { \
printf(message, ##__VA_ARGS__); \
} while (0)
int64_t GetShapeSize(const std::vector<int64_t>& shape) {
int64_t shapeSize = 1;
for (auto i : shape) {
shapeSize *= i;
}
return shapeSize;
}
int Init(int32_t deviceId, aclrtStream* stream) {
// 固定写法,AscendCL初始化
auto ret = aclInit(nullptr);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
ret = aclrtSetDevice(deviceId);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
ret = aclrtCreateStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
return 0;
}
template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr, aclDataType dataType, aclTensor** tensor) {
auto size = GetShapeSize(shape) * sizeof(T);
// 调用aclrtMalloc申请device侧内存
auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
// 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
// 计算连续tensor的strides
std::vector<int64_t> strides(shape.size(), 1);
for (int64_t i = shape.size() - 2; i >= 0; i--) {
strides[i] = shape[i + 1] * strides[i + 1];
}
// 调用aclCreateTensor接口创建aclTensor
*tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND, shape.data(), shape.size(), *deviceAddr);
return 0;
}
int main() {
// 1. (固定写法)device/stream初始化,参考AscendCL对外接口列表
// 根据自己的实际device填写deviceId
int32_t deviceId = 0;
aclrtStream stream;
auto ret = Init(deviceId, &stream);
// check根据自己的需要处理
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
// 2. 构造输入与输出,需要根据API的接口自定义构造
std::vector<int64_t> selfShape = {4, 2};
std::vector<int64_t> outShape = {4, 2};
void* selfDeviceAddr = nullptr;
void* outDeviceAddr = nullptr;
aclTensor* self = nullptr;
aclTensor* out = nullptr;
std::vector<float> selfHostData = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,0.8};
std::vector<float> outHostData = {0, 0, 0, 0, 0, 0, 0, 0};
int decimals = 0;
// 创建self aclTensor
ret = CreateAclTensor(selfHostData, selfShape, &selfDeviceAddr, aclDataType::ACL_FLOAT, &self);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建out aclTensor
ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT, &out);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 3. 调用CANN算子库API,需要修改为具体的Api名称
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
// 调用aclnnRoundDecimals第一段接口
ret = aclnnRoundDecimalsGetWorkspaceSize(self, decimals, out, &workspaceSize, &executor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnRoundDecimalsGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
void* workspaceAddr = nullptr;
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
}
// 调用aclnnRoundDecimals第二段接口
ret = aclnnRoundDecimals(workspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnRoundDecimals failed. ERROR: %d\n", ret); return ret);
uint64_t inplaceWorkspaceSize = 0;
aclOpExecutor* inplaceExecutor;
// 调用aclnnInplaceRoundDecimals第一段接口
ret = aclnnInplaceRoundDecimalsGetWorkspaceSize(self, decimals, &inplaceWorkspaceSize, &inplaceExecutor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnInplaceRoundDecimalsGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
void* inplaceWorkspaceAddr = nullptr;
if (inplaceWorkspaceSize > 0) {
ret = aclrtMalloc(&inplaceWorkspaceAddr, inplaceWorkspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
}
// 调用aclnnInplaceRoundDecimals第二段接口
ret = aclnnInplaceRoundDecimals(inplaceWorkspaceAddr, inplaceWorkspaceSize, inplaceExecutor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnInplaceRoundDecimals failed. ERROR: %d\n", ret); return ret);
// 4. (固定写法)同步等待任务执行结束
ret = aclrtSynchronizeStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
// 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
auto size = GetShapeSize(outShape);
std::vector<float> resultData(size, 0);
ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), outDeviceAddr,
size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
for (int64_t i = 0; i < size; i++) {
LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]);
}
// 6. 释放aclTensor,需要根据具体API的接口定义修改
aclDestroyTensor(self);
aclDestroyTensor(out);
// 7. 释放device资源
aclrtFree(selfDeviceAddr);
aclrtFree(outDeviceAddr);
if (workspaceSize > 0) {
aclrtFree(workspaceAddr);
}
aclrtDestroyStream(stream);
aclrtResetDevice(deviceId);
aclFinalize();
return 0;
}