下载
中文
注册
我要评分
文档获取效率
文档正确性
内容完整性
文档易理解
在线提单
论坛求助
昇腾小AI

aclnnSeluBackward

支持的产品型号

  • Atlas 推理系列产品。
  • Atlas 训练系列产品。
  • Atlas A2训练系列产品/Atlas 800I A2推理产品。

接口原型

每个算子分为两段式接口,必须先调用“aclnnSeluBackwardGetWorkspaceSize”接口获取计算所需workspace大小以及包含了算子计算流程的执行器,再调用“aclnnSeluBackward”接口执行计算。

  • aclnnStatus aclnnSeluBackwardGetWorkspaceSize(const aclTensor* gradOutput, const aclTensor* result, aclTensor* gradInput, uint64_t* workspaceSize, aclOpExecutor** executor)
  • aclnnStatus aclnnSeluBackward(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)

功能描述

  • 算子功能:完成Selu的反向。

  • 计算公式:

    计算激活函数的导数:

    selu(x)x={αex,x<01,x0\frac{\partial selu(x)}{\partial x}=\begin{cases} \alpha e^x,x<0 \\1,x\geq 0\end{cases}

    计算误差对输入的导数:

    Ex=Eyselu(x)x\frac{\partial E}{\partial x}=\frac{\partial E}{\partial y}\frac{\partial selu(x)}{\partial x}

    其中yy为输出,EE为损失函数 alphaalpha=1.6732632423543772848170429916717

aclnnSeluBackwardGetWorkspaceSize

  • 参数说明:

    • gradOutput(aclTensor*,计算输入): 计算公式中的损失函数EE,支持非连续的Tensor,数据格式支持ND,且数据类型、shape需要与result, gradInput一致。

      • Atlas 推理系列产品、Atlas 训练系列产品:数据类型支持FLOAT、FLOAT16、INT32、INT8。
      • Atlas A2训练系列产品/Atlas 800I A2推理产品:数据类型支持FLOAT、FLOAT16、INT32、INT8、BFLOAT16。
    • result(aclTensor*,计算输入): 计算公式中的正向输出yy,支持非连续的Tensor,数据格式支持ND,且数据类型、shape需要与gradOutput, gradInput一致。

      • Atlas 推理系列产品、Atlas 训练系列产品:数据类型支持FLOAT、FLOAT16、INT32、INT8。
      • Atlas A2训练系列产品/Atlas 800I A2推理产品:数据类型支持FLOAT、FLOAT16、INT32、INT8、BFLOAT16。
    • gradInput(aclTensor *,计算输出): 计算公式中的Ex\frac{\partial E}{\partial x},支持非连续的Tensor,数据格式支持ND,且数据类型、shape需要与gradOutput, result一致。

      • Atlas 推理系列产品、Atlas 训练系列产品:数据类型支持FLOAT、FLOAT16、INT32、INT8。
      • Atlas A2训练系列产品/Atlas 800I A2推理产品:数据类型支持FLOAT、FLOAT16、INT32、INT8、BFLOAT16。
    • workspaceSize(uint64_t *,出参):返回需要在Device侧申请的workspace大小。

    • executor(aclOpExecutor **,出参):返回op执行器,包含了算子计算流程。

  • 返回值:

    aclnnStatus:返回状态码,具体参见aclnn返回码

    161001 ACLNN_ERR_PARAM_NULLPTR:1. 传入的gradOutput、result、gradInput是空指针。
    161002 ACLNN_ERR_PARAM_INVALID:1. gradOutput、result、gradInput的数据类型和数据格式不在支持的范围之内。
                                    2. gradOutput、result、gradInput的维度关系不满足可broadcast原则。
                                    3. gradOutput、result、gradInput的数据类型不满足数据类型推导规则。

aclnnSeluBackward

  • 参数说明:

    • workspace(void *, 入参): 在Device侧申请的workspace内存地址。
    • workspaceSize(uint64_t, 入参): 在Device侧申请的workspace大小,由第一段接口aclnnSeluGetWorkspaceSize获取。
    • executor(aclOpExecutor *, 入参): op执行器,包含了算子计算流程。
    • stream(aclrtStream, 入参): 指定执行任务的AscendCL Stream流。
  • 返回值:

    aclnnStatus:返回状态码,具体参见aclnn返回码

约束与限制

调用示例

示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例

#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_selu_backward.h"

#define CHECK_RET(cond, return_expr) \
 do {                                \
  if (!(cond)) {                     \
    return_expr;                     \
  }                                  \
 } while(0)

#define LOG_PRINT(message, ...)   \
 do {                             \
  printf(message, ##__VA_ARGS__); \
 } while(0)

int64_t GetShapeSize(const std::vector<int64_t>& shape) {
  int64_t shape_size = 1;
  for (auto i : shape) {
    shape_size *= i;
  }
  return shape_size;
}

int Init(int32_t deviceId, aclrtStream* stream) {
  // 固定写法,AscendCL初始化
  auto ret = aclInit(nullptr);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
  ret = aclrtSetDevice(deviceId);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
  ret = aclrtCreateStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
  return 0;
}

template<typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
                    aclDataType dataType, aclTensor** tensor) {
  auto size = GetShapeSize(shape) * sizeof(T);
  // 调用aclrtMalloc申请device侧引擎
  auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);

  // 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
  ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);

  // 计算连续tensor的strides
  std::vector<int64_t> strides(shape.size(), 1);
  for (int64_t i = shape.size() - 2; i >= 0; i--) {
    strides[i] = shape[i + 1] * strides[i + 1];
  }

  // 调用aclCreateTensor接口创建aclTensor
  *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
                            shape.data(), shape.size(), *deviceAddr);
  return 0;
}

int main() {
  // 1. (固定写法)device/stream初始化, 参考AscendCL对外接口列表
  // 根据自己的实际device填写deviceId
  int32_t deviceId = 0;
  aclrtStream stream;
  auto ret = Init(deviceId, &stream);
  CHECK_RET(ret == 0, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
  // 2. 构造输入与输出,需要根据API的接口自定义构造
  std::vector<int64_t> selfShape = {4, 2};
  std::vector<int64_t> gradOutputShape = {4, 2};
  std::vector<int64_t> gradInputShape = {4, 2};
  void* selfDeviceAddr = nullptr;
  void* gradOutputDeviceAddr = nullptr;
  void* gradInputDeviceAddr = nullptr;
  aclTensor* self = nullptr;
  aclTensor* gradOutput = nullptr;
  aclTensor* gradInput = nullptr;
  std::vector<float> selfHostData = {0, 1, 2, 3, 4, 5, 6, 7};
  std::vector<int> gradOutputHostData = {1, 1, 1, 1, 1, 1, 1, 1};
  std::vector<int> gradInputHostData = {0, 0, 0, 0, 0, 0, 0, 0};

  ret = CreateAclTensor(selfHostData, selfShape, &selfDeviceAddr, aclDataType::ACL_FLOAT, &self);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  ret = CreateAclTensor(gradOutputHostData, gradOutputShape, &gradOutputDeviceAddr, aclDataType::ACL_FLOAT, &gradOutput);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  ret = CreateAclTensor(gradInputHostData, gradInputShape, &gradInputDeviceAddr, aclDataType::ACL_FLOAT, &gradInput);
  CHECK_RET(ret == ACL_SUCCESS, return ret);

  // 3. 调用CANN算子库API,需要修改为具体的API
  uint64_t workspaceSize = 0;
  aclOpExecutor* executor;
  // 调用aclnnSeluBackward第一段接口
  ret = aclnnSeluBackwardGetWorkspaceSize(gradOutput, self, gradInput, &workspaceSize, &executor);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnSeluBackwardGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);

  // 根据第一段接口计算出的workspaceSize申请device内存
  void* workspaceAddr = nullptr;
  if (workspaceSize > 0) {
    ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
  }
  // 调用aclnnSeluBackward第二段接口
  ret = aclnnSeluBackward(workspaceAddr, workspaceSize, executor, stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnSeluBackward failed. ERROR: %d\n", ret); return ret);
  // 4. (固定写法)同步等待任务执行结束
  ret = aclrtSynchronizeStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
  // 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
  auto size = GetShapeSize(gradInputShape);
  std::vector<float> resultData(size, 0);
  ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), gradInputDeviceAddr, size * sizeof(float),
                    ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
  for (int64_t i = 0; i < size; i++) {
    LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]);
  }
  // 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
  aclDestroyTensor(gradOutput);
  aclDestroyTensor(self);
  aclDestroyTensor(gradInput);

  // 7. 释放device资源,需要根据具体API的接口定义修改
  aclrtFree(selfDeviceAddr);
  aclrtFree(gradOutputDeviceAddr);
  aclrtFree(gradInputDeviceAddr);
  if (workspaceSize > 0) {
    aclrtFree(workspaceAddr);
  }
  aclrtDestroyStream(stream);
  aclrtResetDevice(deviceId);
  aclFinalize();
  return 0;
}
搜索结果
找到“0”个结果

当前产品无相关内容

未找到相关内容,请尝试其他搜索词