下载
中文
注册
我要评分
文档获取效率
文档正确性
内容完整性
文档易理解
在线提单
论坛求助
昇腾小AI

aclnnSmoothL1Loss

支持的产品型号

  • Atlas 训练系列产品。
  • Atlas A2训练系列产品/Atlas 800I A2推理产品。

接口原型

每个算子分为两段式接口,必须先调用“aclnnSmoothL1LossGetWorkspaceSize”接口获取计算所需workspace大小以及包含了算子计算流程的执行器,再调用“aclnnSmoothL1Loss”接口执行计算。

  • aclnnStatus aclnnSmoothL1LossGetWorkspaceSize(const aclTensor* self, const aclTensor* target, int64_t reduction, float beta, aclTensor* result, uint64_t* workspaceSize, aclOpExecutor** executor)
  • aclnnStatus aclnnSmoothL1Loss(void* workspace, uint64_t workspaceSize, aclOpExecutor* executor, aclrtStream stream)

功能描述

  • 算子功能: 计算SmoothL1损失函数。

  • 计算公式:

    Batch为N的损失函数,当reduction为none时,此函数定义为:

    (self,target)=L={l1,,lN}\ell(self,target) = L = \{l_1,\dots,l_N\}^\top

    其中的lnl_n为:

    ln={0.5(selfntargetn)2/beta,ifselfntargetn<betaselfntargetn0.5beta,otherwisel_n = \begin{cases} 0.5(self_n-target_n)^2/beta, & if |self_n-target_n| < beta \\ |self_n-target_n| - 0.5*beta, & otherwise \end{cases}

    如果reductionmeansum时,

    (self,target)={mean(L),if reduction=meansum(L),if reduction=sum\ell(self,target)=\begin{cases} mean(L), & \text{if reduction} = \text{mean}\\ sum(L), & \text{if reduction} = \text{sum} \end{cases}

aclnnSmoothL1LossGetWorkspaceSize

  • 参数说明:

    • self(aclTensor*,计算输入):公式中的self,Device侧的aclTensor。 shape需要与target满足broadcast关系且最高支持8维,数据类型需满足数据类型推导规则(参见互推导关系),支持非连续的Tensor数据格式支持ND、NCL、NCHW、NHWC。

      • Atlas 训练系列产品:数据类型支持FLOAT16、FLOAT32。
      • Atlas A2训练系列产品/Atlas 800I A2推理产品:数据类型支持BFLOAT16、FLOAT16、FLOAT32。
    • target(aclTensor*,计算输入):公式中的target,Device侧的aclTensor。shape需要与self满足broadcast关系且最高支持8维,数据类型需满足数据类型推导规则(参见互推导关系),支持非连续的Tensor数据格式支持ND、NCL、NCHW、NHWC。

      • Atlas 训练系列产品:数据类型支持FLOAT16、FLOAT32。
      • Atlas A2训练系列产品/Atlas 800I A2推理产品:数据类型支持BFLOAT16、FLOAT16、FLOAT32。
    • reduction(int64_t,计算输入):用于指定要应用到输出的缩减公式中的输入,公式中的reduction,Host侧的整型。取值支持0('none')|1('mean')|2('sum'),其中'none'表示不应用减少,'mean'表示输出的总和将除以输出中的元素数,'sum'表示输出将被求和。

    • beta(float,计算输入):数据类型支持FLOAT。

    • result(aclTensor*,计算输出):公式中输出的损失函数\ell,当reductionnone时,shape与self和target的broadcast结果一致,当reductionmeansum时为[ ],支持非连续的Tensor数据格式支持ND、NCL、NCHW、NHWC。

      • Atlas 训练系列产品:数据类型支持FLOAT16、FLOAT32。
      • Atlas A2训练系列产品/Atlas 800I A2推理产品:数据类型支持BFLOAT16、FLOAT16、FLOAT32。
    • workspaceSize(uint64_t*,出参):返回需要在Device侧申请的workspace大小。

    • executor(aclOpExecutor**,出参):返回op执行器,包含了算子计算流程。

  • 返回值:

    aclnnStatus: 返回状态码,具体参见aclnn返回码

    返回161001(ACLNN_ERR_PARAM_NULLPTR):传入的self、target或result为空指针。
    返回161002(ACLNN_ERR_PARAM_INVALID):1. self、target或result的数据类型不在支持的范围之内。
                                          2. self、target或result的shape不符合约束。
                                          3. reduction不符合约束。
                                          4. beta不符合约束。
                                          5. self和target的数据类型不满足数据类型推导规则。
                                          6. self和target的shape不满足broadcast关系。
                                          7. reduction=0时,result的shape与self和target的broadcast的shape不一致。

aclnnSmoothL1Loss

  • 参数说明:

    • workspace(void*,入参):在Device侧申请的workspace内存地址。

    • workspaceSize(uint64_t,入参):在Device侧申请的workspace大小,由第一段接口aclnnSmoothL1LossGetWorkspaceSize获取。

    • executor(aclOpExecutor*,入参):op执行器,包含了算子计算流程。

    • stream(aclrtStream,入参):指定执行任务的AscendCL Stream流。

  • 返回值:

    aclnnStatus: 返回状态码,具体参见aclnn返回码

约束与限制

调用示例

示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例

#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_smooth_l1_loss.h"

#define CHECK_RET(cond, return_expr) \
  do {                               \
    if (!(cond)) {                   \
      return_expr;                   \
    }                                \
  } while (0)

#define LOG_PRINT(message, ...)     \
  do {                              \
    printf(message, ##__VA_ARGS__); \
  } while (0)

int64_t GetShapeSize(const std::vector<int64_t>& shape) {
  int64_t shapeSize = 1;
  for (auto i : shape) {
    shapeSize *= i;
  }
  return shapeSize;
}

int Init(int32_t deviceId, aclrtStream* stream) {
  // 固定写法,AscendCL初始化
  auto ret = aclInit(nullptr);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
  ret = aclrtSetDevice(deviceId);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
  ret = aclrtCreateStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
  return 0;
}

template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
                    aclDataType dataType, aclTensor** tensor) {
  auto size = GetShapeSize(shape) * sizeof(T);
  // 调用aclrtMalloc申请device侧内存
  auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
  // 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
  ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);

  // 计算连续tensor的strides
  std::vector<int64_t> strides(shape.size(), 1);
  for (int64_t i = shape.size() - 2; i >= 0; i--) {
    strides[i] = shape[i + 1] * strides[i + 1];
  }

  // 调用aclCreateTensor接口创建aclTensor
  *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
                            shape.data(), shape.size(), *deviceAddr);
  return 0;
}

int main() {
  // 1. (固定写法)device/stream初始化,参考AscendCL对外接口列表
  // 根据自己的实际device填写deviceId
  int32_t deviceId = 0;
  aclrtStream stream;
  auto ret = Init(deviceId, &stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);

  // 2. 构造输入与输出,需要根据API的接口自定义构造
  std::vector<int64_t> selfShape = {2, 2, 7, 7};
  std::vector<int64_t> targetShape = {2, 2, 7, 7};
  std::vector<int64_t> resultShape = {2, 2, 7, 7};

  // 创建self aclTensor
  std::vector<float> selfData(GetShapeSize(selfShape)* 2, 1);
  aclTensor* self = nullptr;
  void *selfDeviceAddr = nullptr;
  ret = CreateAclTensor(selfData, selfShape, &selfDeviceAddr, aclDataType::ACL_FLOAT16, &self);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建target aclTensor
  std::vector<float> targetData(GetShapeSize(targetShape)* 2, 1);
  aclTensor* target = nullptr;
  void *targetDeviceAddr = nullptr;
  ret = CreateAclTensor(targetData, targetShape, &targetDeviceAddr, aclDataType::ACL_FLOAT16, &target);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建result aclTensor
  std::vector<float> resultData(GetShapeSize(resultShape)* 2, 1);
  aclTensor* result = nullptr;
  void *resultDeviceAddr = nullptr;
  ret = CreateAclTensor(resultData, resultShape, &resultDeviceAddr, aclDataType::ACL_FLOAT16, &result);
  CHECK_RET(ret == ACL_SUCCESS, return ret);

  // 3. 调用CANN算子库API,需要修改为具体的Api名称
  uint64_t workspaceSize = 0;
  aclOpExecutor* executor;
  // 调用aclnnSmoothL1Loss第一段接口
  int64_t reduction = 0;
  float beta = 1.0;
  ret = aclnnSmoothL1LossGetWorkspaceSize(self, target, reduction, beta, result, &workspaceSize, &executor);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnSmoothL1LossGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
  // 根据第一段接口计算出的workspaceSize申请device内存
  void* workspaceAddr = nullptr;
  if (workspaceSize > 0) {
    ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
  }
  // 调用aclnnSmoothL1Loss第二段接口
  ret = aclnnSmoothL1Loss(workspaceAddr, workspaceSize, executor, stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnSmoothL1Loss failed. ERROR: %d\n", ret); return ret);

  // 4. (固定写法)同步等待任务执行结束
  ret = aclrtSynchronizeStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);

  // 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
  auto size = GetShapeSize(resultShape);
  std::vector<float> resultOutData(size, 0);
  ret = aclrtMemcpy(resultOutData.data(), resultOutData.size() * sizeof(resultOutData[0]), resultDeviceAddr,
                    size * sizeof(resultOutData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
  for (int64_t i = 0; i < size; i++) {
    LOG_PRINT("result[%ld] is: %f\n", i, resultOutData[i]);
  }

  // 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
  aclDestroyTensor(self);
  aclDestroyTensor(target);
  aclDestroyTensor(result);
  // 7. 释放device资源,需要根据具体API的接口定义参数
  aclrtFree(selfDeviceAddr);
  aclrtFree(targetDeviceAddr);
  aclrtFree(resultDeviceAddr);
  if (workspaceSize > 0) {
    aclrtFree(workspaceAddr);
  }
  aclrtDestroyStream(stream);
  aclrtResetDevice(deviceId);
  aclFinalize();
  return 0;
}
搜索结果
找到“0”个结果

当前产品无相关内容

未找到相关内容,请尝试其他搜索词