下载
中文
注册
我要评分
文档获取效率
文档正确性
内容完整性
文档易理解
在线提单
论坛求助
昇腾小AI

aclnnTriangularSolve

  • Atlas 训练系列产品。
  • Atlas A2训练系列产品/Atlas 800I A2推理产品。

接口原型

每个算子分为两段式接口,必须先调用“aclnnTriangularSolveGetWorkspaceSize”接口获取计算所需workspace大小以及包含了算子计算流程的执行器,再调用“aclnnTriangularSolve”接口执行计算。

  • aclnnStatus aclnnTriangularSolveGetWorkspaceSize(const aclTensor *self, const aclTensor *A, bool upper, bool transpose, bool unitriangular, aclTensor *xOut, aclTensor *mOut, uint64_t *workspaceSize, aclOpExecutor **executor)
  • aclnnStatus aclnnTriangularSolve(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, const aclrtStream stream)

功能描述

  • 算子功能:求解一个具有方形上或下三角形可逆矩阵A和多个右侧b的方程组。
  • 计算公式:AX=bAX = b 其中AA是一个上三角方阵(当upper为false时为下三角方阵),其主对角线不含0的元素。b,Ab,A为二维矩阵或者二维矩阵的batch,当输入为batch时,返回输出的X也为对应的batch。当AA的主对角线含有0,或元素非常接近0,且unitriangular为False时,输出结果可能包含NaNsNaN s

aclnnTriangularSolveGetWorkspaceSize

  • 参数说明:

    • self(aclTensor*, 计算输入): 公式中的bb,数据类型支持FLOAT、DOUBLE、COMPLEX64、COMPLEX128, 且数据类型与A一致,且数据维度至少为2且不大于8。支持非连续的Tensor数据格式支持ND。self[-2]=A[-2]。除最后两个维度之外,A和self的其余维度满足broadcast关系。

    • A(aclTensor*, 计算输入): 公式中的AA,数据类型支持FLOAT、DOUBLE、COMPLEX64、COMPLEX128, 且数据类型与self一致,且数据维度至少为2且不大于8。支持非连续的Tensor数据格式支持ND。最后两个轴相等。除最后两个维度之外,A和self的其余维度满足broadcast关系。

    • upper(bool, 计算输入):计算属性,默认为true, A为上三角方阵,当upper为false时,A为下三角方阵。

    • transpose(bool, 计算输入):计算属性,默认为false, 当transpsose为true时,计算ATX=bA^T X=b

    • unitriangular(bool, 计算输入):计算属性,默认为false,当unitriangular为true时,A的主对角线元素视为1,而不是从A引用,并且unitriangular为true时输入selfA,输出xOutmOut的数据类型只支持FLOAT。

    • xOut(aclTensor *, 计算输出): 公式中的XX,数据类型支持FLOAT、DOUBLE、COMPLEX64、COMPLEX128,且数据类型与self一致,支持非连续的Tensor数据格式支持ND,且shape需要与broadcast后的A,b满足AX=bAX=b约束。A和self满足broadcast关系之后的维度,最后一根轴dim=self[-1]。

    • mOut(aclTensor *, 计算输出): broadcast后A的上三角(下三角)拷贝,数据类型支持FLOAT、DOUBLE、COMPLEX64、COMPLEX128,且数据类型与self一致,支持非连续的Tensor数据格式支持ND。A和self满足broadcast关系之后的维度,最后一根轴dim=A[-1]。

    • workspaceSize(uint64_t *, 出参):返回需要在Device侧申请的workspace大小。

    • executor(aclOpExecutor **, 出参):返回op执行器,包含了算子计算流程。

  • 返回值:

    aclnnStatus: 返回状态码,具体参见aclnn返回码

    161001(ACLNN_ERR_PARAM_NULLPTR):1. 传入的self、A或xOut,mOut是空指针。
    161002(ACLNN_ERR_PARAM_INVALID):1. self、A或xOut,mOut的数据类型和数据格式不在支持的范围之内。
                                     2. self、A或xOut,mOut的shape不符合约束

aclnnTriangularSolve

  • 参数说明:

    • workspace(void *, 入参):在Device侧申请的workspace内存地址。

    • workspaceSize(uint64_t, 入参):在Device侧申请的workspace大小,由第一段接口aclnnTriangularSolveGetWorkspaceSize获取。

    • executor(aclOpExecutor *, 入参):op执行器,包含了算子计算流程。

    • stream(aclrtStream, 入参):指定执行任务的AscendCL Stream流。

  • 返回值:

    aclnnStatus: 返回状态码,具体参见aclnn返回码

约束与限制

无。

调用示例

示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例

#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_triangular_solve.h"

#define CHECK_RET(cond, return_expr) \
  do {                               \
    if (!(cond)) {                   \
      return_expr;                   \
    }                                \
  } while (0)

#define LOG_PRINT(message, ...)     \
  do {                              \
    printf(message, ##__VA_ARGS__); \
  } while (0)

int64_t GetShapeSize(const std::vector<int64_t>& shape) {
  int64_t shapeSize = 1;
  for (auto i : shape) {
    shapeSize *= i;
  }
  return shapeSize;
}

int Init(int32_t deviceId, aclrtStream* stream) {
  // 固定写法,AscendCL初始化
  auto ret = aclInit(nullptr);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
  ret = aclrtSetDevice(deviceId);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
  ret = aclrtCreateStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
  return 0;
}

template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
                    aclDataType dataType, aclTensor** tensor) {
  auto size = GetShapeSize(shape) * sizeof(T);
  // 调用aclrtMalloc申请device侧内存
  auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
  // 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
  ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);

  // 计算连续tensor的strides
  std::vector<int64_t> strides(shape.size(), 1);
  for (int64_t i = shape.size() - 2; i >= 0; i--) {
    strides[i] = shape[i + 1] * strides[i + 1];
  }

  // 调用aclCreateTensor接口创建aclTensor
  *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
                            shape.data(), shape.size(), *deviceAddr);
  return 0;
}

int main() {
  // 1. (固定写法)device/stream初始化,参考AscendCL对外接口列表
  // 根据自己的实际device填写deviceId
  int32_t deviceId = 0;
  aclrtStream stream;
  auto ret = Init(deviceId, &stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);

  // 2. 构造输入与输出,需要根据API的接口自定义构造
  std::vector<int64_t> selfShape = {3, 1};
  std::vector<int64_t> otherShape = {3, 3};
  std::vector<int64_t> xOutShape = {3, 1};
  std::vector<int64_t> mOutShape = {3, 3};
  void* selfDeviceAddr = nullptr;
  void* otherDeviceAddr = nullptr;
  void* xOutDeviceAddr = nullptr;
  void* mOutDeviceAddr = nullptr;
  aclTensor* self = nullptr;
  aclTensor* other = nullptr;
  aclTensor* xOut = nullptr;
  aclTensor* mOut = nullptr;
  bool upper = true;
  bool transpose = false;
  bool unitriangular = false;
  std::vector<float> selfHostData = {1, 2, 3};
  std::vector<float> otherHostData = {1, 2, 3, 0, 4, 5, 0, 0, 6};
  std::vector<float> xOutHostData = {-0.2500, -0.1250, 0.5000};
  std::vector<float> mOutHostData = {1, 2, 3, 0, 4, 5, 0, 0, 6};
  // 创建self aclTensor
  ret = CreateAclTensor(selfHostData, selfShape, &selfDeviceAddr, aclDataType::ACL_FLOAT, &self);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建other aclTensor
  ret = CreateAclTensor(otherHostData, otherShape, &otherDeviceAddr, aclDataType::ACL_FLOAT, &other);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建xOut aclTensor
  ret = CreateAclTensor(xOutHostData, xOutShape, &xOutDeviceAddr, aclDataType::ACL_FLOAT, &xOut);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建mOut aclTensor
  ret = CreateAclTensor(mOutHostData, mOutShape, &mOutDeviceAddr, aclDataType::ACL_FLOAT, &mOut);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 3. 调用CANN算子库API,需要修改为具体的Api名称
  uint64_t workspaceSize = 0;
  aclOpExecutor* executor;
  // 调用aclnnTriangularSolve第一段接口
  ret = aclnnTriangularSolveGetWorkspaceSize(self, other, upper, transpose, unitriangular, xOut, mOut, &workspaceSize, &executor);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnTriangularSolveGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
  // 根据第一段接口计算出的workspaceSize申请device内存
  void* workspaceAddr = nullptr;
  if (workspaceSize > 0) {
    ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
  }
  // 调用aclnnTriangularSolve第二段接口
  ret = aclnnTriangularSolve(workspaceAddr, workspaceSize, executor, stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnTriangularSolve failed. ERROR: %d\n", ret); return ret);

  // 4. (固定写法)同步等待任务执行结束
  ret = aclrtSynchronizeStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);

  // 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
  auto xSize = GetShapeSize(xOutShape);
  std::vector<float> resultData(xSize, 0);
  ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), xOutDeviceAddr,
                    xSize * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
  for (int64_t i = 0; i < xSize; i++) {
    LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]);
  }

  auto mSize = GetShapeSize(mOutShape);
  std::vector<float> mResultData(mSize, 0);
  ret = aclrtMemcpy(mResultData.data(), mResultData.size() * sizeof(mResultData[0]), mOutDeviceAddr,
                    mSize * sizeof(mResultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
  for (int64_t i = 0; i < mSize; i++) {
    LOG_PRINT("result[%ld] is: %f\n", i, mResultData[i]);
  }

  // 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
  aclDestroyTensor(self);
  aclDestroyTensor(other);
  aclDestroyTensor(xOut);
  aclDestroyTensor(mOut);

  // 7. 释放device资源,需要根据具体API的接口定义修改
  aclrtFree(selfDeviceAddr);
  aclrtFree(otherDeviceAddr);
  aclrtFree(xOutDeviceAddr);
  aclrtFree(mOutDeviceAddr);
  if (workspaceSize > 0) {
    aclrtFree(workspaceAddr);
  }
  aclrtDestroyStream(stream);
  aclrtResetDevice(deviceId);
  aclFinalize();
  return 0;
}
搜索结果
找到“0”个结果

当前产品无相关内容

未找到相关内容,请尝试其他搜索词