下载
中文
注册
我要评分
文档获取效率
文档正确性
内容完整性
文档易理解
在线提单
论坛求助
昇腾小AI

TensorTrait

功能说明

GlobalTensorLocalTensor中通过ShapeInfo类型的成员变量来保存shape信息,可以通过SetShapeInfo、GetShapeInfo来进行设置或者获取,通常用于算子实现内部的shape信息保存和传递。在不使用上述ShapeInfo功能的情况下,不需要这些信息。此时可以使用TensorTrait定义不含ShapeInfo的GlobalTensor以及LocalTensor,以降低内存占用,提升运行性能。

定义原型

1
2
3
4
template <typename T>
struct TensorTrait {
    using LiteType = T;
};

参数说明

表1 TensorTrait结构体模板参数说明

参数名

描述

T

只支持如下基础数据类型:int4b_t、uint8_t、int8_t、int16_t、uint16_t、bfloat16_t、int32_t、uint32_t、int64_t、uint64_t、float、half 。

通过TensorTrait可以得到一个使用TensorTrait表达的Tensor数据类型:在TensorTrait结构体内部,使用using关键字定义了一个类型别名LiteType,与模板参数T类型一致

通过TensorTrait定义的LocalTensor/GlobalTensor不包含ShapeInfo信息。

例如:

LocalTensor<float>对应的不含ShapeInfo信息的Tensor为LocalTensor<TensorTrait<float>>。

约束说明

  • 同一接口不支持同时输入TensorTrait类型的GlobalTensor/LocalTensor和非TensorTrait类型的GlobalTensor/LocalTensor。
  • 非TensorTrait类型和TensorTrait类型的GlobalTensor/LocalTensor相互之间不支持拷贝构造和赋值运算符。
  • TensorTrait特性当前仅支持如下接口:
    表2 TensorTrait特性支持的接口列表

    接口分类

    接口名称

    备注

    基础API>内存管理与同步控制>TQue/TQueBind

    AllocTensor、FreeTensor、EnQue、DeQue

    _

    基础API>矢量计算>单目指令

    Exp、Ln、Abs、Reciprocal、Sqrt、Rsqrt、Not、Relu

    -

    基础API>矢量计算>双目指令

    Add、Sub、Mul、Div、Max、Min、And、Or、AddRelu、AddReluCast、AddDeqRelu、SubRelu、SubReluCast、MulAddDst、FusedMulAdd、FusedMulAddRelu、

    -

    基础API>矢量计算>标量双目指令

    Adds、Muls、Maxs、Mins、ShiftLeft、ShiftRight、LeakyRelu

    -

    基础API>数据搬运

    DataCopy、Copy

    切片数据搬运接口需要ShapeInfo信息,不支持输入TensorTrait类型的GlobalTensor/LocalTensor

    基础指令>ISASI(体系结构相关)>矩阵计算

    InitConstValue、LoadData、LoadDataWithTranspose、SetAippFunctions、LoadImageToLocal、LoadUnzipIndex、LoadDataUnzip、LoadDataWithSparse、SetFmatrix、SetLoadDataBoundary、SetLoadDataRepeat、SetLoadDataPaddingValue、Mmad、MmadWithSparse、Fixpipe、SetFixPipeConfig、SetFixpipeNz2ndFlag、SetFixpipePreQuantFlag、BroadCastVecToMM、SetHF32Mode、SetHF32TransMode、SetMMLayoutTransform、CheckLocalMemoryIA、Conv2D、Gemm

    -

调用示例

  • 双目指令使用TensorTrait样例
    1
    2
    3
    4
    5
    // 使用系统描述符TensorTrait
    AscendC::LocalTensor<AscendC::TensorTrait<half>> tensor1 = que1.DeQue<AscendC::TensorTrait<half>>();
    AscendC::LocalTensor<AscendC::TensorTrait<half>> tensor2 = que2.DeQue<AscendC::TensorTrait<half>>();
    AscendC::LocalTensor<AscendC::TensorTrait<half>> tensor3 = que3.AllocTensor<AscendC::TensorTrait<half>>();
    Add(tensor3, tensor1, tensor2, tensor3.GetSize());
    
  • 标量双目指令使用TensorTrait样例
     1
     2
     3
     4
     5
     6
     7
     8
     9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    #include "kernel_operator.h"
    class KernelBinaryScalarTrait {
    public:
        __aicore__ inline KernelBinaryScalarTrait() {}
        __aicore__ inline void Init(__gm__ uint8_t* src, __gm__ uint8_t* dstGm)
        {
            srcGlobal.SetGlobalBuffer((__gm__ int16_t*)src);
            dstGlobal.SetGlobalBuffer((__gm__ int16_t*)dstGm);
            pipe.InitBuffer(inQueueSrc, 1, 512 * sizeof(int16_t));
            pipe.InitBuffer(outQueueDst, 1, 512 * sizeof(int16_t));
        }
        __aicore__ inline void Process()
        {
            CopyIn();
            Compute();
            CopyOut();
        }
    private:
        __aicore__ inline void CopyIn()
        {
            AscendC::LocalTensor<AscendC::TensorTrait<int16_t>> srcLocal = inQueueSrc.AllocTensor<AscendC::TensorTrait<int16_t>>();
            AscendC::DataCopy(srcLocal, srcGlobal, 512);
            inQueueSrc.EnQue(srcLocal);
        }
        __aicore__ inline void Compute()
        {
            AscendC::LocalTensor<AscendC::TensorTrait<int16_t>> srcLocal = inQueueSrc.DeQue<AscendC::TensorTrait<int16_t>>();
            AscendC::LocalTensor<AscendC::TensorTrait<int16_t>> dstLocal = outQueueDst.AllocTensor<AscendC::TensorTrait<int16_t>>();
    
            uint64_t mask = 128;
            int16_t scalar = 2;
            // repeatTimes = 4, 128 elements one repeat, 512 elements total
           // dstBlkStride, srcBlkStride = 1, no gap between blocks in one repeat
           // dstRepStride, srcRepStride =8, no gap between repeats
            AscendC::Adds(dstLocal, srcLocal, scalar, mask, 4, {1, 1, 8, 8});
            
            outQueueDst.EnQue(dstLocal);
            inQueueSrc.FreeTensor(srcLocal);
        }
        __aicore__ inline void CopyOut()
        {
            AscendC::LocalTensor<AscendC::TensorTrait<int16_t>> dstLocal = outQueueDst.DeQue<AscendC::TensorTrait<int16_t>>();
            AscendC::DataCopy(dstGlobal, dstLocal, 512);
            outQueueDst.FreeTensor(dstLocal);
        }
    private:
        AscendC::TPipe pipe;
        AscendC::TQue<AscendC::QuePosition::VECIN, 1> inQueueSrc;
        AscendC::TQue<AscendC::QuePosition::VECOUT, 1> outQueueDst;
        AscendC::GlobalTensor<AscendC::TensorTrait<int16_t>> srcGlobal, dstGlobal;
    };
    extern "C" __global__ __aicore__ void binary_scalar_trait_kernel(__gm__ uint8_t* src, __gm__ uint8_t* dstGm)
    {
        KernelBinaryScalarTrait op;
        op.Init(src, dstGm);
        op.Process();
    }
    
  • 矩阵计算基础API使用TensorTrait样例
      1
      2
      3
      4
      5
      6
      7
      8
      9
     10
     11
     12
     13
     14
     15
     16
     17
     18
     19
     20
     21
     22
     23
     24
     25
     26
     27
     28
     29
     30
     31
     32
     33
     34
     35
     36
     37
     38
     39
     40
     41
     42
     43
     44
     45
     46
     47
     48
     49
     50
     51
     52
     53
     54
     55
     56
     57
     58
     59
     60
     61
     62
     63
     64
     65
     66
     67
     68
     69
     70
     71
     72
     73
     74
     75
     76
     77
     78
     79
     80
     81
     82
     83
     84
     85
     86
     87
     88
     89
     90
     91
     92
     93
     94
     95
     96
     97
     98
     99
    100
    101
    102
    103
    104
    105
    106
    107
    108
    109
    110
    111
    112
    113
    114
    115
    116
    117
    118
    119
    120
    121
    122
    123
    124
    125
    126
    127
    128
    129
    130
    131
    132
    133
    134
    135
    136
    137
    138
    139
    140
    141
    142
    143
    144
    145
    146
    147
    148
    149
    150
    151
    152
    153
    154
    155
    156
    157
    158
    159
    160
    161
    162
    #include "kernel_operator.h"
    template <typename dst_T, typename fmap_T, typename weight_T, typename dstCO1_T, typename bias_T> class KernelMatmul {
    public:
        __aicore__ inline KernelMatmul(uint16_t mIn, uint8_t kIn, uint8_t nIn, bool initl1In, bool initl0In)
        {
            m = mIn;
            k = kIn;
            n = nIn;
            aSize = m * k;
            bSize = k * n;
            cSize = m * n;
            initl0 = initl0In;
            initl1 = initl1In;
        }
        __aicore__ inline void Init(__gm__ uint8_t *a, __gm__ uint8_t *b, __gm__ uint8_t *c)
        {
            aGM.SetGlobalBuffer((__gm__ fmap_T *)a);
            bGM.SetGlobalBuffer((__gm__ weight_T *)b);
            cGM.SetGlobalBuffer((__gm__ dstCO1_T *)c);
            pipe.InitBuffer(inQueueA1, 1, aSize * sizeof(fmap_T));
            pipe.InitBuffer(inQueueA2, 1, aSize * sizeof(fmap_T));
            pipe.InitBuffer(inQueueB1, 1, bSize * sizeof(weight_T));
            pipe.InitBuffer(inQueueB2, 2, bSize * sizeof(weight_T));
            pipe.InitBuffer(outQueueCO1, 1, cSize * sizeof(dstCO1_T));
        }
        __aicore__ inline void Process()
        {
            CopyIn();
            SplitA();
            SplitB();
            Compute();
            CopyOut();
        }
    private:
        __aicore__ inline void CopyIn()
        {
            AscendC::LocalTensor<AscendC::TensorTrait<fmap_T>> a1Local = inQueueA1.AllocTensor<AscendC::TensorTrait<fmap_T>>();
            AscendC::LocalTensor<AscendC::TensorTrait<weight_T>> b1Local = inQueueB1.AllocTensor<AscendC::TensorTrait<weight_T>>();
            if(initl1 == true) {
                AscendC::InitConstValue(a1Local, {static_cast<uint16_t>(m * k * sizeof(fmap_T) / 32), 1, 0, 1});
                AscendC::InitConstValue(b1Local, {static_cast<uint16_t>(k * n * sizeof(weight_T) / 32), 1, 0, 1});
            } else {
                AscendC::DataCopy(a1Local, aGM, aSize);
                AscendC::DataCopy(b1Local, bGM, bSize);
            }
            inQueueA1.EnQue(a1Local);
            inQueueB1.EnQue(b1Local);
        }
        __aicore__ inline void SplitA()
        {
            AscendC::LocalTensor<AscendC::TensorTrait<fmap_T>> a1Local = inQueueA1.DeQue<AscendC::TensorTrait<fmap_T>>();
            AscendC::LocalTensor<AscendC::TensorTrait<fmap_T>> a2Local = inQueueA2.AllocTensor<AscendC::TensorTrait<fmap_T>>();
            // 1、load2d L1->L0A
            AscendC::LoadData2dParams loadL0AParams;
            loadL0AParams.repeatTimes = m * k * sizeof(fmap_T) / 512;
            loadL0AParams.srcStride = 1;
            loadL0AParams.dstGap = 0;
            if (initl0 == true) {
                InitConstValue(a2Local, {static_cast<uint16_t>(m * k * sizeof(fmap_T) / 512), 1, 0, 1});
            } else{
                LoadData(a2Local, a1Local, loadL0AParams);
            }
            inQueueA2.EnQue<AscendC::TensorTrait<fmap_T>>(a2Local);
            inQueueA1.FreeTensor(a1Local);
        }
        __aicore__ inline void SplitB()
        {
            AscendC::LocalTensor<AscendC::TensorTrait<weight_T>> b1Local = inQueueB1.DeQue<AscendC::TensorTrait<weight_T>>();
            AscendC::LocalTensor<AscendC::TensorTrait<weight_T>> b2Local = inQueueB2.AllocTensor<AscendC::TensorTrait<weight_T>>();
            // 2、load2d L1->L0B
            AscendC::LoadData2dParams loadL0BParams;
            loadL0BParams.repeatTimes = k * n * sizeof(weight_T) / 512;
            loadL0BParams.srcStride = 1;
            loadL0BParams.dstGap = 0;
            if (initl0 == true) {
                AscendC::InitConstValue(b2Local, {static_cast<uint16_t>(k * n * sizeof(weight_T) / 512), 1, 0, 1});
            } else{
                AscendC::LoadData(b2Local, b1Local, loadL0BParams);
            }
            inQueueB1.FreeTensor(b1Local);
            inQueueB2.EnQue<AscendC::TensorTrait<weight_T>>(b2Local);
        }
        __aicore__ inline void Compute()
        {
            AscendC::LocalTensor<AscendC::TensorTrait<fmap_T>> a2Local = inQueueA2.DeQue<AscendC::TensorTrait<fmap_T>>();
            AscendC::LocalTensor<AscendC::TensorTrait<weight_T>> b2Local = inQueueB2.DeQue<AscendC::TensorTrait<weight_T>>();
            AscendC::LocalTensor<AscendC::TensorTrait<dstCO1_T>> c1Local = outQueueCO1.AllocTensor<AscendC::TensorTrait<dstCO1_T>>();
            mmadParams.isBias = false;
            mmadParams.m = m;
            mmadParams.n = n;
            mmadParams.k = k;
            AscendC::Mmad(c1Local, a2Local, b2Local, mmadParams); // m*n
            outQueueCO1.EnQue<AscendC::TensorTrait<dstCO1_T>>(c1Local);
            inQueueA2.FreeTensor(a2Local);
            inQueueB2.FreeTensor(b2Local);
        }
    #if __CCE_AICORE__ <= 200
        __aicore__ inline void CopyOut()
        {
            AscendC::LocalTensor<AscendC::TensorTrait<dstCO1_T>> c1Local = outQueueCO1.DeQue<AscendC::TensorTrait<dstCO1_T>>();
            uint16_t M_ = Ceil(m, 16) * 16;
            AscendC::LocalTensor<AscendC::TensorTrait<dst_T>> ublocal;
            AscendC::TBuffAddr tbufublocal;
            tbufublocal.logicPos = (uint8_t)AscendC::QuePosition::C1;
            ublocal.SetAddr(tbufublocal);
            ublocal.InitBuffer(0, M_ * n);
            DataCopyParams dataCopyParams;
            dataCopyParams.blockCount = 1;
            dataCopyParams.blockLen = Ceil(M_ * n * 4, 1024);
            DataCopyEnhancedParams enhancedParams;
            enhancedParams.blockMode = AscendC::BlockMode::BLOCK_MODE_MATRIX;
            AscendC::DataCopy(ublocal, c1Local, dataCopyParams, enhancedParams);
            PipeBarrier<PIPE_ALL>();
            outQueueCO1.FreeTensor(c1Local);
            dataCopyParams.blockCount = 1;
            dataCopyParams.blockLen = m * n *sizeof(dstCO1_T) / ONE_BLK_SIZE;
            dataCopyParams.srcStride = 0;
            dataCopyParams.dstStride = 0;
            AscendC::DataCopy(cGM, ublocal, dataCopyParams);
        }
    #else
        __aicore__ inline void CopyOut()
        {
            AscendC::LocalTensor<AscendC::TensorTrait<dstCO1_T>> c1Local = outQueueCO1.DeQue<AscendC::TensorTrait<dstCO1_T>>();
            AscendC::FixpipeParamsV220 fixpipeParams;
            fixpipeParams.nSize = n;
            fixpipeParams.mSize = m;
            fixpipeParams.srcStride = m;
            fixpipeParams.dstStride = n;
            fixpipeParams.ndNum = 1;
            fixpipeParams.srcNdStride = 0;
            fixpipeParams.dstNdStride = 0;
            AscendC::Fixpipe(cGM, c1Local, fixpipeParams);
            outQueueCO1.FreeTensor(c1Local);
        }
    #endif
    private:
        AscendC::TPipe pipe;
        AscendC::TQue<AscendC::QuePosition::A1, 1> inQueueA1;
        AscendC::TQue<AscendC::QuePosition::A2, 1> inQueueA2;
        AscendC::TQue<AscendC::QuePosition::B1, 1> inQueueB1;
        AscendC::TQue<AscendC::QuePosition::B2, 1> inQueueB2;
        // dst queue
        AscendC::TQue<AscendC::QuePosition::CO1, 1> outQueueCO1;
        AscendC::GlobalTensor<AscendC::TensorTrait<fmap_T>> aGM;
        AscendC::GlobalTensor<AscendC::TensorTrait<weight_T>> bGM;
        AscendC::GlobalTensor<AscendC::TensorTrait<dst_T>> cGM;
        uint16_t m, k, n;
        bool initl0, initl1;
        uint16_t aSize, bSize, cSize, b2Size;
        AscendC::MmadParams mmadParams;
    };
    extern "C" __global__ __aicore__ void cube_initconstvalue_simple_operator_half_16_32_16_true_false(
        __gm__ uint8_t *a, __gm__ uint8_t *b, __gm__ uint8_t *c)
    {
        if ASCEND_IS_AIV {
            return;
        }
        KernelMatmul<float, half, half, float, half> op(16, 32, 16, true, false);
        op.Init(a, b, c);
        op.Process();
    }
    
搜索结果
找到“0”个结果

当前产品无相关内容

未找到相关内容,请尝试其他搜索词