HcclCreateSubCommConfig方式创建子通信域
HcclCreateSubCommConfig接口可以基于全局通信域创建子通信域,全局通信域可以基于ranktable文件或者root info协商方式创建,该样例以基于ranktable文件创建的全局通信域为例,给出如何创建子通信域的样例代码。
准备ranktable文件
该样例中全局通信域通过获取ranktable的方式进行初始化,所以需准备一份ranktable文件配置集群信息,供后续调用接口时使用。
配置“RANK_TABLE_FILE”环境变量,指定ranktable文件所在路径,如下所示,文件名称为“ranktable.json”。
export RANK_TABLE_FILE=/home/test/ranktable.json
以Atlas A2 训练系列产品,组网为单机8卡为例,ranktable.json配置示例如下,不同产品形态ranktable文件的配置示例及详细参数说明可参见ranktable文件配置资源信息。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 | { "status":"completed", // ranktable可用标识,completed为可用 "version": "1.0", "server_count": "1", // 参与训练的AI Server数目 "server_list": [{ "server_id": "SERVER_ID_SV1", // AI Server标识,String类型,请确保全局唯一 "device": [{ // AI Server中的Device列表 "device_id": "0", "device_ip": "192.168.1.8", "rank_id": "0" }, { "device_id": "1", "device_ip": "192.168.1.9", "rank_id": "1" }, { "device_id": "2", "device_ip": "192.168.1.10", "rank_id": "2" }, { "device_id": "3", "device_ip": "192.168.1.11", "rank_id": "3" }, { "device_id": "4", "device_ip": "192.168.1.12", "rank_id": "4" }, { "device_id": "5", "device_ip": "192.168.1.13", "rank_id": "5" }, { "device_id": "6", "device_ip": "192.168.1.14", "rank_id": "6" }, { "device_id": "7", "device_ip": "192.168.1.15", "rank_id": "7" }] }] } |
HcclSend/HcclRecv操作代码样例
该样例仅支持从单机N卡的组网中切分出1个4卡子通信域,N需要大于等于4且小于等于8。实际执行节点仅限于属于子通信域的4张卡,属于组网但不属于子通信域的节点不可执行该用例。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 | #include <iostream> #include <vector> #include <memory> #include <thread> #include <chrono> #include <cstring> #include "hccl/hccl.h" #include "hccl/hccl_types.h" #include "mpi.h" #define ACLCHECK(ret) do { \ if(ret != ACL_SUCCESS)\ {\ printf("acl interface return err %s:%d, retcode: %d \n", __FILE__, __LINE__, ret);\ return ret;\ }\ } while(0) #define HCCLCHECK(ret) do { \ if(ret != HCCL_SUCCESS) \ { \ printf("hccl interface return errreturn err %s:%d, retcode: %d \n", __FILE__, __LINE__, ret); \ return ret;\ } \ } while(0) struct ThreadContext { HcclComm comm; int32_t device; }; int Sample(void *arg) { ThreadContext* ctx = (ThreadContext *)arg; // 申请通信用device、sendBuf,recvBuf内存、stream等资源 ACLCHECK(aclrtSetDevice(ctx->device)); aclrtStream stream; ACLCHECK(aclrtCreateStream(&stream)); void* sendBuff; void* recvBuff; void* hostBuff; uint64_t count = 4; int mallocSize = count * sizeof(float); //初始化输入内存 ACLCHECK(aclrtMallocHost((void**)&hostBuff, mallocSize)); float* tmpHostBuff = static_cast<float*>(hostBuff); for (uint32_t i = 0; i < count; ++i) { tmpHostBuff[i] = 2; } ACLCHECK(aclrtMalloc((void**)&sendBuff, mallocSize, ACL_MEM_MALLOC_HUGE_FIRST)); ACLCHECK(aclrtMemcpy((void*)sendBuff, mallocSize, (void*)hostBuff, mallocSize, ACL_MEMCPY_HOST_TO_DEVICE)); ACLCHECK(aclrtMalloc((void**)&recvBuff, mallocSize, ACL_MEM_MALLOC_HUGE_FIRST)); // 执行SendRecv操作 if (ctx->device / 2 == 0) { HCCLCHECK(HcclSend(sendBuff, count, HCCL_DATA_TYPE_FP32, ctx->device + 2, ctx->comm, stream)); } else { HCCLCHECK(HcclRecv(recvBuff, count, HCCL_DATA_TYPE_FP32, ctx->device - 2, ctx->comm, stream)); } ACLCHECK(aclrtSynchronizeStream(stream)); if (ctx->device / 2 == 1) { void* resultBuff; ACLCHECK(aclrtMallocHost((void**)&resultBuff, mallocSize)); ACLCHECK(aclrtMemcpy((void*)resultBuff, mallocSize, (void*)recvBuff, mallocSize, ACL_MEMCPY_DEVICE_TO_HOST)); float* tmpResBuff = static_cast<float*>(resultBuff); for (uint32_t i = 0; i < count; ++i) { std::cout << "rankId:" << ctx->device << ",i" << i << " " << tmpResBuff[i] << std::endl; } ACLCHECK(aclrtFreeHost(resultBuff)); } // 释放通信用sendBuf、recvBuf内存,stream等资源 ACLCHECK(aclrtFreeHost(hostBuff)); ACLCHECK(aclrtFree(recvBuff)); ACLCHECK(aclrtFree(sendBuff)); ACLCHECK(aclrtDestroyStream(stream)); ACLCHECK(aclrtResetDevice(ctx->device)); return 0; } int main() { MPI_Init(NULL, NULL); int procSize = 0; int procRank = 0; // 获取当前进程在所属进程组的编号 MPI_Comm_size(MPI_COMM_WORLD, &procSize); MPI_Comm_rank(MPI_COMM_WORLD, &procRank); int devId = procRank; int devCount = procSize; // 设备资源初始化 ACLCHECK(aclInit(NULL)); // 获取ranktable路径 char* rankTableFile = getenv("RANK_TABLE_FILE"); // 指定集合通信操作使用的设备 ACLCHECK(aclrtSetDevice(devId)); // 创建并初始化通信域配置项 HcclCommConfig config; HcclCommConfigInit(&config); // 根据需要修改通信域配置 config.hcclBufferSize = 50; strcpy(config.hcclCommName, "comm_1"); HcclComm globalHcclComm; HcclCommInitClusterInfoConfig(rankTableFile, devId, &config, &globalHcclComm); HcclComm hcclComm; strcpy(config.hcclCommName, "comm_2"); uint32_t rankIds[4] = {0, 1, 2, 3}; HCCLCHECK(HcclCreateSubCommConfig(&globalHcclComm, 4, rankIds, 1, devId, &config, &hcclComm)); struct ThreadContext args; args.comm = hcclComm; args.device = devId; Sample((void *)&args); HCCLCHECK(HcclCommDestroy(hcclComm)); // 设备资源去初始化 ACLCHECK(aclFinalize()); MPI_Finalize(); return 0; } |
HcclAllReduce操作代码样例
该样例仅支持从单机8卡的组网中切分出2个4卡子通信域。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 | #include <iostream> #include <vector> #include <memory> #include <thread> #include <chrono> #include <cstring> #include "hccl/hccl.h" #include "hccl/hccl_types.h" #include "mpi.h" #define ACLCHECK(ret) do { \ if(ret != ACL_SUCCESS)\ {\ printf("acl interface return err %s:%d, retcode: %d \n", __FILE__, __LINE__, ret);\ return ret;\ }\ } while(0) #define HCCLCHECK(ret) do { \ if(ret != HCCL_SUCCESS) \ { \ printf("hccl interface return errreturn err %s:%d, retcode: %d \n", __FILE__, __LINE__, ret); \ return ret;\ } \ } while(0) struct ThreadContext { HcclComm commFront; HcclComm commBack; int32_t device; }; int Sample(void *arg) { ThreadContext* ctx = (ThreadContext *)arg; void* host_buf = nullptr; void* send_buff = nullptr; void* recv_buff = nullptr; uint64_t count = 1; int malloc_kSize = count * sizeof(float); aclrtEvent start_event, end_event; aclrtStream stream; ACLCHECK(aclrtCreateStream(&stream)); ACLCHECK(aclrtCreateEvent(&start_event)); ACLCHECK(aclrtCreateEvent(&end_event)); //申请集合通信操作的内存 ACLCHECK(aclrtMalloc((void**)&send_buff, malloc_kSize, ACL_MEM_MALLOC_HUGE_FIRST)); ACLCHECK(aclrtMalloc((void**)&recv_buff, malloc_kSize, ACL_MEM_MALLOC_HUGE_FIRST)); //初始化输入内存 ACLCHECK(aclrtMallocHost((void**)&host_buf, malloc_kSize)); ACLCHECK(aclrtMemcpy((void*)send_buff, malloc_kSize, (void*)host_buf, malloc_kSize, ACL_MEMCPY_HOST_TO_DEVICE)); //执行集合通信操作 if (ctx->device < 4) { HCCLCHECK(HcclAllReduce((void *)send_buff, (void*)recv_buff, count, HCCL_DATA_TYPE_FP32, HCCL_REDUCE_SUM, ctx->commFront, stream)); } else { HCCLCHECK(HcclAllReduce((void *)send_buff, (void*)recv_buff, count, HCCL_DATA_TYPE_FP32, HCCL_REDUCE_SUM, ctx->commBack, stream)); } //等待stream中集合通信任务执行完成 ACLCHECK(aclrtSynchronizeStream(stream)); if (ctx->device < 8) { void* resultBuff; ACLCHECK(aclrtMallocHost((void**)&resultBuff, malloc_kSize)); ACLCHECK(aclrtMemcpy((void*)resultBuff, malloc_kSize, (void*)recv_buff, malloc_kSize, ACL_MEMCPY_DEVICE_TO_HOST)); float* tmpResBuff = static_cast<float*>(resultBuff); for (uint32_t i = 0; i < count; ++i) { std::cout << "rankId:" << ctx->device << ",i" << i << " " << tmpResBuff[i] << std::endl; } ACLCHECK(aclrtFreeHost(resultBuff)); } ACLCHECK(aclrtFree(send_buff)); ACLCHECK(aclrtFree(recv_buff)); ACLCHECK(aclrtFreeHost(host_buf)); //销毁任务流 ACLCHECK(aclrtDestroyStream(stream)); ACLCHECK(aclrtDestroyEvent(start_event)); ACLCHECK(aclrtDestroyEvent(end_event)); return 0; } int main() { MPI_Init(NULL, NULL); int procSize = 0; int procRank = 0; // 获取当前进程在所属进程组的编号 MPI_Comm_size(MPI_COMM_WORLD, &procSize); MPI_Comm_rank(MPI_COMM_WORLD, &procRank); int devId = procRank; int devCount = procSize; // 设备资源初始化 ACLCHECK(aclInit(NULL)); // 获取ranktable路径 char* rankTableFile = getenv("RANK_TABLE_FILE"); // 指定集合通信操作使用的设备 ACLCHECK(aclrtSetDevice(devId)); // 创建并初始化通信域配置项 HcclCommConfig config; HcclCommConfigInit(&config); // 根据需要修改通信域配置 config.hcclBufferSize = 50; strcpy(config.hcclCommName, "comm_1"); HcclComm globalHcclComm; HcclCommInitClusterInfoConfig(rankTableFile, devId, &config, &globalHcclComm); struct ThreadContext args; if (devId < 4) { HcclComm hcclCommFront; strcpy(config.hcclCommName, "comm_2"); uint32_t rankIdsFront[4] = {0, 1, 2, 3}; HCCLCHECK(HcclCreateSubCommConfig(&globalHcclComm, 4, rankIdsFront, 1, devId, &config, &hcclCommFront)); args.commFront = hcclCommFront; args.device = devId; Sample((void *)&args); HCCLCHECK(HcclCommDestroy(hcclCommFront)); } else { HcclComm hcclCommBack; strcpy(config.hcclCommName, "comm_3"); uint32_t rankIdsBack[4] = {4, 5, 6, 7}; HCCLCHECK(HcclCreateSubCommConfig(&globalHcclComm, 4, rankIdsBack, 2, devId - 4, &config, &hcclCommBack)); args.commBack = hcclCommBack; args.device = devId; Sample((void *)&args); HCCLCHECK(HcclCommDestroy(hcclCommBack)); } // 设备资源去初始化 ACLCHECK(aclFinalize()); MPI_Finalize(); return 0; } |
父主题: 样例代码