下载
中文
注册

aclnnAdaptiveAvgPool3dBackward

支持的产品型号

  • Atlas A2 训练系列产品/Atlas 800I A2 推理产品

接口原型

每个算子分为两段式接口,必须先调用“aclnnAdaptiveAvgPool3dBackwardGetWorkspaceSize”接口获取计算所需workspace大小以及包含了算子计算流程的执行器,再调用“aclnnAdaptiveAvgPool3dBackward”接口执行计算。

  • aclnnStatus aclnnAdaptiveAvgPool3dBackwardGetWorkspaceSize(const aclTensor* gradOutput, const aclTensor* self, aclTensor* out, uint64_t* workspaceSize, aclOpExecutor** executor)
  • aclnnStatus aclnnAdaptiveAvgPool3dBackward(void* workspace, uint64_t workspaceSize, aclOpExecutor* executor, aclrtStream stream)

功能描述

aclnnAdaptiveAvgPool3dBackwardGetWorkspaceSize

  • 参数说明:

    • gradOutput(aclTensor*,计算输入):当前节点的梯度,Device侧的aclTensor。数据类型支持BFLOAT16、FLOAT16、FLOAT32,且数据类型与self一致。支持非连续的Tensor,shape支持4维或5维,shape的每一维均为正数,且总维数与self一致。数据格式支持NCDHW、ND,且需要与self数据格式一致。
    • self(aclTensor*, 计算输入):输入张量,叶子节点。Device侧的aclTensor,数据类型支持BFLOAT16、FLOAT16、FLOAT32,支持非连续的Tensor,shape支持4维或5维,且shape的每一维均为正数。数据格式支持NCDHW、ND。
    • out(aclTensor*, 计算输出):输出张量,对应了输入叶子节点的梯度。Device侧的aclTensor,数据类型支持BFLOAT16、FLOAT16、FLOAT32;shape与self保持一致;数据格式支持NCDHW、ND,且与self数据类型一致。
    • workspaceSize(uint64_t*,出参):返回需要在Device侧申请的workspace大小。
    • executor(aclOpExecutor**,出参):返回op执行器,包含了算子计算流程。
  • 返回值:

    aclnnStatus:返回状态码,具体参见aclnn返回码

    第一段接口完成入参校验,出现以下场景时报错:
    返回161001 (ACLNN_ERR_PARAM_NULLPTR):1. 传入的gradOutput、self或out是空指针。
    返回161002 (ACLNN_ERR_PARAM_INVALID):1. gradOutput和self的数据类型和数据格式不在支持的范围之内。
                                          2. gradOutput、self和out数据类型不一致。
                                          3. gradOutput、self和out的维数不等于4或5。
                                          4. gradOutput、self和out的shape不匹配。
                                          5. gradOutput或self的shape的某一维不大于0。
                                          6. gradOutput和self的数据格式不一致。

aclnnAdaptiveAvgPool3dBackward

  • 参数说明:

    • workspace(void*,入参):在Device侧申请的workspace内存地址。
    • workspaceSize(uint64_t,入参):在Device侧申请的workspace大小,由第一段接口aclnnAdaptiveAvgPool3dBackwardGetWorkspaceSize获取。
    • executor(aclOpExecutor*,入参):op执行器,包含了算子计算流程。
    • stream(aclrtStream,入参):指定执行任务的AscendCL Stream流。
  • 返回值:

    aclnnStatus:返回状态码,具体参见aclnn返回码

约束与限制

调用示例

示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例

#include <iostream>
#include <vector>
#include "math.h"
#include "acl/acl.h"
#include "aclnnop/aclnn_adaptive_avg_pool3d_backward.h"

#define CHECK_RET(cond, return_expr) \
  do {                               \
    if (!(cond)) {                   \
      return_expr;                   \
    }                                \
  } while (0)

#define LOG_PRINT(message, ...)     \
  do {                              \
    printf(message, ##__VA_ARGS__); \
  } while (0)

int64_t GetShapeSize(const std::vector<int64_t>& shape) {
  int64_t shapeSize = 1;
  for (auto i : shape) {
    shapeSize *= i;
  }
  return shapeSize;
}

int Init(int32_t deviceId, aclrtStream* stream) {
  // 固定写法,AscendCL初始化
  auto ret = aclInit(nullptr);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
  ret = aclrtSetDevice(deviceId);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
  ret = aclrtCreateStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
  return 0;
}

template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
                    aclDataType dataType, aclTensor** tensor) {
  auto size = GetShapeSize(shape) * sizeof(T);
  // 调用aclrtMalloc申请device侧内存
  auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
  // 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
  ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);

  // 计算连续tensor的strides
  std::vector<int64_t> strides(shape.size(), 1);
  for (int64_t i = shape.size() - 2; i >= 0; i--) {
    strides[i] = shape[i + 1] * strides[i + 1];
  }

  // 调用aclCreateTensor接口创建aclTensor
  *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
                            shape.data(), shape.size(), *deviceAddr);
  return 0;
}

int main() {
  // 1. device/stream初始化,参考AscendCL对外接口列表
  int32_t deviceId = 0;
  aclrtStream stream;
  auto ret = Init(deviceId, &stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);

  // 2. 构造输入与输出
  std::vector<int64_t> yGradShape = {2, 2, 1, 1, 2};
  std::vector<int64_t> xShape = {2, 2, 1, 1, 4};
  std::vector<int64_t> xGradShape = {2, 2, 1, 1, 4};
  void* yGradDeviceAddr = nullptr;
  void* xDeviceAddr = nullptr;
  void* xGradDeviceAddr = nullptr;
  aclTensor* yGrad = nullptr;
  aclTensor* x = nullptr;
  aclTensor* xGrad = nullptr;
  std::vector<float> yGradHostData = {1, 2, 3, 4, 5, 6, 7, 8};
  std::vector<float> xHostData(GetShapeSize(xShape), 1);
  std::vector<float> xGradHostData(16, 0);
  // 创建yGrad aclTensor
  ret = CreateAclTensor(yGradHostData, yGradShape, &yGradDeviceAddr, aclDataType::ACL_FLOAT, &yGrad);
  // 创建x aclTensor
  ret = CreateAclTensor(xHostData, xShape, &xDeviceAddr, aclDataType::ACL_FLOAT, &x);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建xGrad aclTensor
  ret = CreateAclTensor(xGradHostData, xGradShape, &xGradDeviceAddr, aclDataType::ACL_FLOAT, &xGrad);
  CHECK_RET(ret == ACL_SUCCESS, return ret);

  // 3. 调用CANN算子库API
  uint64_t workspaceSize = 0;
  aclOpExecutor* executor;
  // 调用aclnnAdaptiveAvgPool3dBackward第一段接口
  ret = aclnnAdaptiveAvgPool3dBackwardGetWorkspaceSize(yGrad, x, xGrad, &workspaceSize, &executor);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnAdaptiveAvgPool3dBackwardGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
  // 根据第一段接口计算出的workspaceSize申请device内存
  void* workspaceAddr = nullptr;
  if (workspaceSize > 0) {
    ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
  }
  // 调用aclnnAdaptiveAvgPool3dBackward二段接口
  ret = aclnnAdaptiveAvgPool3dBackward(workspaceAddr, workspaceSize, executor, stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnAdaptiveAvgPool3dBackward failed. ERROR: %d\n", ret); return ret);

  // 4. 同步等待任务执行结束
  ret = aclrtSynchronizeStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);

  // 5. 获取输出的值,将device侧内存上的结果拷贝至host侧
  auto size = GetShapeSize(xGradShape);
  std::vector<float> resultData(size, 0);
  ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), xGradDeviceAddr,
                    size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
  for (int64_t i = 0; i < size; i++) {
    LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]);
  }

  // 6. 释放aclTensor
  aclDestroyTensor(yGrad);
  aclDestroyTensor(x);
  aclDestroyTensor(xGrad);

  // 7. 释放Device资源,需要根据具体API的接口定义修改
  aclrtFree(yGradDeviceAddr);
  aclrtFree(xDeviceAddr);
  aclrtFree(xGradDeviceAddr);
  if (workspaceSize > 0) {
    aclrtFree(workspaceAddr);
  }
  aclrtDestroyStream(stream);
  aclrtResetDevice(deviceId);
  aclFinalize();

  return 0;
}