下载
中文
注册

aclnnAddRelu&aclnnInplaceAddRelu

支持的产品型号

  • Atlas 训练系列产品
  • Atlas A2 训练系列产品/Atlas 800I A2 推理产品

接口原型

  • aclnnAddRelu和aclnnInplaceAddRelu实现相同的功能,使用区别如下,请根据自身实际场景选择合适的算子。

    • aclnnAddRelu:需新建一个输出张量对象存储计算结果。
    • aclnnInplaceAddRelu:无需新建输出张量对象,直接在输入张量的内存中存储计算结果。
  • 每个算子分为两段式接口,必须先调用“aclnnAddReluGetWorkspaceSize”或者“aclnnInplaceAddReluGetWorkspaceSize”接口获取计算所需workspace大小以及包含了算子计算流程的执行器,再调用“aclnnAddRelu”或者“aclnnInplaceAddRelu”接口执行计算。

    • aclnnStatus aclnnAddReluGetWorkspaceSize(const aclTensor* self, const aclTensor* other, aclScalar* alpha, aclTensor* out, uint64_t* workspaceSize, aclOpExecutor** executor)
    • aclnnStatus aclnnAddRelu(void* workspace, uint64_t workspaceSize, aclOpExecutor* executor, aclrtStream stream)
    • aclnnStatus aclnnInplaceAddReluGetWorkspaceSize(aclTensor* selfRef, const aclTensor* other, aclScalar* alpha, uint64_t* workspaceSize, aclOpExecutor** executor)
    • aclnnStatus aclnnInplaceAddRelu(void* workspace, uint64_t workspaceSize, aclOpExecutor* executor, aclrtStream stream)

功能描述

  • 算子功能:完成加法计算后得到结果再进行激活。
  • 计算公式:
outi=selfi+alpha×otheriout_i = self_i+alpha \times other_i relu(self)={self,self>00,self0relu(self) = \begin{cases} self, & self\gt 0 \\ 0, & self\le 0 \end{cases}

aclnnAddReluGetWorkspaceSize

  • 参数说明:

    • self(aclTensor*, 计算输入):公式中的输入self,数据类型与other的数据类型需满足数据类型推导规则(参见互推导关系),shape需要与other满足broadcast关系。支持非连续的Tensor数据格式支持ND。

      • Atlas 训练系列产品:数据类型支持FLOAT16、FLOAT32、INT8、UINT8、INT16、INT32、INT64。
      • Atlas A2 训练系列产品/Atlas 800I A2 推理产品:数据类型支持BFLOAT16、FLOAT16、FLOAT32、INT8、UINT8、INT16、INT32、INT64。
    • other(aclTensor*, 计算输入):公式中的输入other,数据类型与self的数据类型需满足数据类型推导规则(参见互推导关系),shape需要与self满足broadcast关系。支持非连续的Tensor数据格式支持ND。

      • Atlas 训练系列产品:数据类型支持FLOAT16、FLOAT32、INT8、UINT8、INT16、INT32、INT64。
      • Atlas A2 训练系列产品/Atlas 800I A2 推理产品:数据类型支持BFLOAT16、FLOAT16、FLOAT32、INT8、UINT8、INT16、INT32、INT64。
    • alpha(aclScalar*, 计算输入):公式中的alpha,数据类型需要可转换成self与other推导后的数据类型。

      • Atlas 训练系列产品:数据类型支持FLOAT16、FLOAT32、INT8、UINT8、INT16、INT32、INT64。
      • Atlas A2 训练系列产品/Atlas 800I A2 推理产品:数据类型支持BFLOAT16、FLOAT16、FLOAT32、INT8、UINT8、INT16、INT32、INT64。
    • out(aclTensor*, 计算输出):公式中的out,数据类型需要是self与other推导之后可转换的数据类型,shape需要是self与other broadcast之后的shape。支持非连续的Tensor数据格式支持ND。

      • Atlas 训练系列产品:数据类型支持FLOAT16、FLOAT32、INT8、UINT8、INT16、INT32、INT64。
      • Atlas A2 训练系列产品/Atlas 800I A2 推理产品:数据类型支持BFLOAT16、FLOAT16、FLOAT32、INT8、UINT8、INT16、INT32、INT64。
    • workspaceSize(uint64_t*, 出参):返回需要在Device侧申请的workspace大小。

    • executor(aclOpExecutor**, 出参):返回op执行器,包含了算子计算流程。

  • 返回值:

    aclnnStatus:返回状态码,具体参见aclnn返回码

    第一段接口完成入参校验,出现以下场景时报错:
    返回161001 (ACLNN_ERR_PARAM_NULLPTR):1. 传入的self、other、alpha或out是空指针。
    返回161002 (ACLNN_ERR_PARAM_INVALID):1. self和other的数据类型不在支持的范围之内。
                                         2. self和other无法做数据类型推导。
                                         3. 推导出的数据类型无法转换为指定输出out的类型。
                                         4. self和other的shape无法做broadcast。
                                         5. alpha无法转换为self和other推导后的数据类型。

aclnnAddRelu

  • 参数说明:

    • workspace(void*, 入参):在Device侧申请的workspace内存地址。
    • workspaceSize(uint64_t, 入参):在Device侧申请的workspace大小,由第一段接口aclnnAddReluGetWorkspaceSize获取。
    • executor(aclOpExecutor*, 入参):op执行器,包含了算子计算流程。
    • stream(aclrtStream, 入参):指定执行任务的AscendCL Stream流。
  • 返回值:

    aclnnStatus:返回状态码,具体参见aclnn返回码

aclnnInplaceAddReluGetWorkspaceSize

  • 参数说明:

    • selfRef(aclTensor*, 计算输入|计算输出):输入输出tensor,即公式中的self与out,数据类型与other的数据类型需满足数据类型推导规则(参见互推导关系),且需要是推导之后可转换的数据类型。支持非连续的Tensor数据格式支持ND。

      • Atlas 训练系列产品:数据类型支持FLOAT16、FLOAT32、INT8、UINT8、INT16、INT32、INT64。
      • Atlas A2 训练系列产品/Atlas 800I A2 推理产品:数据类型支持BFLOAT16、FLOAT16、FLOAT32、INT8、UINT8、INT16、INT32、INT64。
    • other(aclTensor*, 计算输入):公式中的输入other,数据类型与selfRef的数据类型需满足数据类型推导规则(参见互推导关系),shape需要与selfRef满足broadcast关系。支持非连续的Tensor数据格式支持ND。

      • Atlas 训练系列产品:数据类型支持FLOAT16、FLOAT32、INT8、UINT8、INT16、INT32、INT64。
      • Atlas A2 训练系列产品/Atlas 800I A2 推理产品:数据类型支持BFLOAT16、FLOAT16、FLOAT32、INT8、UINT8、INT16、INT32、INT64。
    • alpha(aclScalar*, 计算输入):公式中的alpha,数据类型需要可转换成selfRef与other推导后的数据类型。

      • Atlas 训练系列产品:数据类型支持FLOAT16、FLOAT32、INT8、UINT8、INT16、INT32、INT64。
      • Atlas A2 训练系列产品/Atlas 800I A2 推理产品:数据类型支持BFLOAT16、FLOAT16、FLOAT32、INT8、UINT8、INT16、INT32、INT64。
    • workspaceSize(uint64_t*, 出参):返回需要在Device侧申请的workspace大小。

    • executor(aclOpExecutor**, 出参):返回op执行器,包含了算子计算流程。

  • 返回值:

    aclnnStatus:返回状态码,具体参见aclnn返回码

    161001 (ACLNN_ERR_PARAM_NULLPTR):1. 传入的selfRef、other或alpha是空指针。
    161002 (ACLNN_ERR_PARAM_INVALID):1. selfRef和other的数据类型不在支持的范围之内。
                                      2. selfRef和other无法做数据类型推导。
                                      3. 推导出的数据类型无法转换为selfRef的类型。
                                      4. selfRef和other的shape无法做broadcast。
                                      5. broadcast后的shape不等于selfRef的shape。
                                      6. alpha无法转换为selfRef和other推导后的数据类型。

aclnnInplaceAddRelu

  • 参数说明:

    • workspace(void*, 入参):在Device侧申请的workspace内存地址。

    • workspaceSize(uint64_t, 入参):在Device侧申请的workspace大小,由第一段接口aclnnInplaceAddReluGetWorkspaceSize获取。

    • executor(aclOpExecutor*, 入参):op执行器,包含了算子计算流程。

    • stream(aclrtStream, 入参):指定执行任务的AscendCL Stream流。

  • 返回值:

    aclnnStatus:返回状态码,具体参见aclnn返回码

约束与限制

调用示例

示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例

#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_add.h"

#define CHECK_RET(cond, return_expr) \
  do {                               \
    if (!(cond)) {                   \
      return_expr;                   \
    }                                \
  } while (0)

#define LOG_PRINT(message, ...)     \
  do {                              \
    printf(message, ##__VA_ARGS__); \
  } while (0)

int64_t GetShapeSize(const std::vector<int64_t>& shape) {
  int64_t shapeSize = 1;
  for (auto i : shape) {
    shapeSize *= i;
  }
  return shapeSize;
}

int Init(int32_t deviceId, aclrtStream* stream) {
  // 固定写法,AscendCL初始化
  auto ret = aclInit(nullptr);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
  ret = aclrtSetDevice(deviceId);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
  ret = aclrtCreateStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
  return 0;
}

template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
                    aclDataType dataType, aclTensor** tensor) {
  auto size = GetShapeSize(shape) * sizeof(T);
  // 调用aclrtMalloc申请device侧内存
  auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
  // 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
  ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);

  // 计算连续tensor的strides
  std::vector<int64_t> strides(shape.size(), 1);
  for (int64_t i = shape.size() - 2; i >= 0; i--) {
    strides[i] = shape[i + 1] * strides[i + 1];
  }

  // 调用aclCreateTensor接口创建aclTensor
  *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
                            shape.data(), shape.size(), *deviceAddr);
  return 0;
}

int main() {
  // 1. (固定写法)device/stream初始化,参考AscendCL对外接口列表
  // 根据自己的实际device填写deviceId
  int32_t deviceId = 0;
  aclrtStream stream;
  auto ret = Init(deviceId, &stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);

  // 2. 构造输入与输出,需要根据API的接口自定义构造
  std::vector<int64_t> selfShape = {4, 2};
  std::vector<int64_t> otherShape = {4, 2};
  std::vector<int64_t> outShape = {4, 2};
  void* selfDeviceAddr = nullptr;
  void* otherDeviceAddr = nullptr;
  void* outDeviceAddr = nullptr;
  aclTensor* self = nullptr;
  aclTensor* other = nullptr;
  aclScalar* alpha = nullptr;
  aclTensor* out = nullptr;
  std::vector<float> selfHostData = {0, 1, 2, 3, 4, 5, 6, 7};
  std::vector<float> otherHostData = {1, 1, 1, 2, 2, 2, 3, 3};
  std::vector<float> outHostData(8, 0);
  float alphaValue = 1.2f;
  // 创建self aclTensor
  ret = CreateAclTensor(selfHostData, selfShape, &selfDeviceAddr, aclDataType::ACL_FLOAT, &self);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建other aclTensor
  ret = CreateAclTensor(otherHostData, otherShape, &otherDeviceAddr, aclDataType::ACL_FLOAT, &other);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建alpha aclScalar
  alpha = aclCreateScalar(&alphaValue, aclDataType::ACL_FLOAT);
  CHECK_RET(alpha != nullptr, return ret);
  // 创建out aclTensor
  ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT, &out);
  CHECK_RET(ret == ACL_SUCCESS, return ret);

  uint64_t workspaceSize = 0;
  aclOpExecutor* executor;
  
  // aclnnAddRelu接口调用示例  
  // 3. 调用CANN算子库API
  // 调用aclnnAddRelu第一段接口
  ret = aclnnAddReluGetWorkspaceSize(self, other, alpha, out, &workspaceSize, &executor);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnAddReluGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
  // 根据第一段接口计算出的workspaceSize申请device内存
  void* workspaceAddr = nullptr;
  if (workspaceSize > 0) {
    ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
  }
  // 调用aclnnAddRelu第二段接口
  ret = aclnnAddRelu(workspaceAddr, workspaceSize, executor, stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnAddRelu failed. ERROR: %d\n", ret); return ret);

  // 4. (固定写法)同步等待任务执行结束
  ret = aclrtSynchronizeStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);

  // 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
  auto size = GetShapeSize(outShape);
  std::vector<float> resultData(size, 0);
  ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), outDeviceAddr,
                    size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
  for (int64_t i = 0; i < size; i++) {
    LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]);
  }

    
  // aclnnInplaceAddRelu接口调用示例  
  // 3. 调用CANN算子库API
  LOG_PRINT("\ntest aclnnInplaceAddRelu\n");
  // 调用aclnnInplaceAddRelu第一段接口
  ret = aclnnInplaceAddReluGetWorkspaceSize(self, other, alpha, &workspaceSize, &executor);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnInplaceAddReluGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
  // 根据第一段接口计算出的workspaceSize申请device内存
  if (workspaceSize > 0) {
    ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
  }
  // 调用aclnnInplaceAddRelu第二段接口
  ret = aclnnInplaceAddRelu(workspaceAddr, workspaceSize, executor, stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnInplaceAddRelu failed. ERROR: %d\n", ret); return ret);

  // 4. (固定写法)同步等待任务执行结束
  ret = aclrtSynchronizeStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);

  // 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
  ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), selfDeviceAddr,
                    size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
  for (int64_t i = 0; i < size; i++) {
    LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]);
  }  
     
    
  // 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
  aclDestroyTensor(self);
  aclDestroyTensor(other);
  aclDestroyScalar(alpha);
  aclDestroyTensor(out);

  // 7. 释放Device资源,需要根据具体API的接口定义修改
  aclrtFree(selfDeviceAddr);
  aclrtFree(otherDeviceAddr);
  aclrtFree(outDeviceAddr);
  if (workspaceSize > 0) {
    aclrtFree(workspaceAddr);
  }
  aclrtDestroyStream(stream);
  aclrtResetDevice(deviceId);
  aclFinalize();

  return 0;
}