下载
中文
注册

aclnnBlendImagesCustom

支持的产品型号

  • Atlas 推理系列产品

接口原型

每个算子分为两段式接口,必须先调用“aclnnBlendImagesCustomGetWorkspaceSize”接口获取计算所需workspace大小以及包含了算子计算流程的执行器,再调用“aclnnBlendImagesCustom”接口执行计算。

  • aclnnstatus aclnnBlendImagesCustomGetWorkspaceSize(const aclTensor *rgb, const aclTensor *alpha, const aclTensor *frame, aclTensor *out, uint64_t *workspaceSize, aclOpExecutor **executor)
  • aclnnstatus aclnnBlendImagesCustom(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)

功能描述

  • 算子功能:完成张量rgb、frame和alpha的透明度乘法计算。

  • 计算公式:

outi3=rgbi3(alphai/255)+framei3(1alphai/255)out_{i*3}=rgb_{i*3} * (alpha_i / 255) + frame_{i*3}*(1 - alpha_i/255)

aclnnBlendImagesCustomGetWorkspaceSize

  • 参数说明:

    • rgb(aclTensor*, 计算输入): Device侧的aclTensor,数据类型支持UINT8,shape支持HWC(C=3),与alpha满足broadcast关系。只支持连续Tensor,数据格式支持ND。
    • alpha(aclTensor*, 计算输入): Device侧的aclTensor,数据类型支持UINT8,shape支持HWC(C=1),与rgb满足broadcast关系。只支持连续Tensor,数据格式支持ND。
    • frame(aclTensor*, 计算输入): Device侧的aclTensor,数据类型支持UINT8,shape支持HWC(C=3),与alpha满足broadcast关系。只支持连续Tensor,数据格式支持ND。
    • out(aclTensor*, 计算输出): Device侧的aclTensor,数据类型支持UINT8,shape支持HWC(C=3),与frameshape一致。只支持连续Tensor,数据格式支持ND。
    • workspaceSize(uint64_t*, 出参): 返回需要在Device侧申请的workspace大小。
    • executor(aclOpExecutor**, 出参): 返回op执行器,包含了算子计算流程。
  • 返回值:

    aclnnStatus: 返回状态码,具体参见aclnn返回码

    第一段接口完成入参校验,出现以下场景时报错:
    返回161001 (ACLNN_ERR_PARAM_NULLPTR):1. 传入的rgb、alpha、frame或out是空指针。
    返回161002 (ACLNN_ERR_PARAM_INVALID):
    1. rgb、alpha、frame的数据类型和数据格式不在支持的范围之内。
    2. rgb、alpha、frame的shape无法做broadcast,rgb和frame支持HWC(C=3), alpha支持HWC(C=1)。

aclnnBlendImagesCustom

  • 参数说明:

    • workspace(void *, 入参): 在Device侧申请的workspace内存地址。
    • workspaceSize(uint64_t, 入参): 在Device侧申请的workspace大小,由第一段接口aclnnBlendImagesGetWorkspaceSize获取。
    • executor(aclOpExecutor *, 入参): op执行器,包含了算子计算流程。
    • stream(aclrtStream, 入参): 指定执行任务的AscendCL Stream流。
  • 返回值:

    aclnnStatus: 返回状态码,具体参见aclnn返回码

约束与限制

调用示例

示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例

#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_blend_images_custom.h"

#define CHECK_RET(cond, return_expr) \
  do {                               \
    if (!(cond)) {                   \
      return_expr;                   \
    }                                \
  } while (0)

#define LOG_PRINT(message, ...)     \
  do {                              \
    printf(message, ##__VA_ARGS__); \
  } while (0)

int64_t GetShapeSize(const std::vector<int64_t>& shape) {
  int64_t shapeSize = 1;
  for (auto i : shape) {
    shapeSize *= i;
  }
  return shapeSize;
}

void PrintOutResult(std::vector<int64_t> &shape, void** deviceAddr) {
  auto size = GetShapeSize(shape);
  std::vector<float> resultData(size, 0);
  auto ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]),
                         *deviceAddr, size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return);
  for (int64_t i = 0; i < size; i++) {
    LOG_PRINT("mean result[%ld] is: %f\n", i, resultData[i]);
  }
}

int Init(int32_t deviceId, aclrtStream* stream) {
  // 固定写法,AscendCL初始化
  auto ret = aclInit(nullptr);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
  ret = aclrtSetDevice(deviceId);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
  ret = aclrtCreateStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
  return 0;
}

template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
                    aclDataType dataType, aclTensor** tensor) {
  auto size = GetShapeSize(shape) * sizeof(T);
  // 调用aclrtMalloc申请device侧内存
  auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
  // 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
  ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);

  // 计算连续tensor的strides
  std::vector<int64_t> strides(shape.size(), 1);
  for (int64_t i = shape.size() - 2; i >= 0; i--) {
    strides[i] = shape[i + 1] * strides[i + 1];
  }

  // 调用aclCreateTensor接口创建aclTensor
  *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
                            shape.data(), shape.size(), *deviceAddr);
  return 0;
}

int main() {
  // 1. (固定写法)device/stream初始化,参考AscendCL对外接口列表
  // 根据自己的实际device填写deviceId
  int32_t deviceId = 0;
  aclrtStream stream;
  auto ret = Init(deviceId, &stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);

  // 2. 构造输入与输出,需要根据API的接口自定义构造
  std::vector<int64_t> rgbShape = {4, 3};
  std::vector<int64_t> alphaShape = {4, 1};
  std::vector<int64_t> frameShape = {4, 3};
  std::vector<int64_t> outShape = {4, 3};

  void* rgbDeviceAddr = nullptr;
  void* alphaDeviceAddr = nullptr;
  void* frameDeviceAddr = nullptr;
  void* outDeviceAddr = nullptr;

  aclTensor* rgb = nullptr;
  aclTensor* alpha = nullptr;
  aclTensor* frame = nullptr;
  aclTensor* out = nullptr;

  std::vector<float> rgbHostData = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120};
  std::vector<float> alphaHostData = {255, 255, 255, 255};
  std::vector<float> frameHostData = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120};
  std::vector<float> outHostData = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120};

  ret = CreateAclTensor(rgbHostData, rgbShape, &rgbDeviceAddr, aclDataType::ACL_UINT8, &rgb);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  ret = CreateAclTensor(alphaHostData, alphaShape, &alphaDeviceAddr, aclDataType::ACL_UINT8, &alpha);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  ret = CreateAclTensor(frameHostData, frameShape, &frameDeviceAddr, aclDataType::ACL_UINT8, &frame);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_UINT8, &out);
  CHECK_RET(ret == ACL_SUCCESS, return ret);

  // 3. 调用CANN算子库API,需要修改为具体的Api名称
  uint64_t workspaceSize = 0;
  aclOpExecutor* executor;

  // 调用aclnnBlendImagesCustom第一段接口
  ret = aclnnBlendImagesCustomGetWorkspaceSize(rgb, alpha, frame, out, &workspaceSize, &executor);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnBlendImagesCustomGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);

  // 根据第一段接口计算出的workspaceSize申请device内存
  void* workspaceAddr = nullptr;
  if (workspaceSize > 0) {
    ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
  }

  // 调用aclnnBlendImagesCustom第二段接口
  ret = aclnnBlendImagesCustom(workspaceAddr, workspaceSize, executor, stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnBlendImagesCustom failed. ERROR: %d\n", ret); return ret);

  // 4. (固定写法)同步等待任务执行结束
  ret = aclrtSynchronizeStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);

  // 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
  PrintOutResult(outShape, &outDeviceAddr);

  // 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
  aclDestroyTensor(rgb);
  aclDestroyTensor(alpha);
  aclDestroyTensor(frame);
  aclDestroyTensor(out);

  // 7. 释放device资源
  aclrtFree(rgbDeviceAddr);
  aclrtFree(alphaDeviceAddr);
  aclrtFree(frameDeviceAddr);
  aclrtFree(outDeviceAddr);
  if (workspaceSize > 0) {
    aclrtFree(workspaceAddr);
  }
  aclrtDestroyStream(stream);
  aclrtResetDevice(deviceId);
  aclFinalize();

  return 0;
}