aclnnGroupNormSwishGrad
支持的产品型号
Atlas A2 训练系列产品/Atlas 800I A2 推理产品 。
接口原型
每个算子分为两段式接口,必须先调用“aclnnGroupNormSwishGradGetWorkspaceSize”接口获取计算所需workspace大小以及包含了算子计算流程的执行器,再调用“aclnnGroupNormSwishGrad”接口执行计算。
aclnnStatus aclnnGroupNormSwishGradGetWorkspaceSize(const aclTensor* dy, const aclTensor* mean, const aclTensor* rstd, const aclTensor* x, const aclTensor* gamma, const aclTensor* beta, int64_t group, char* dataFormat, float swishScale, aclTensor* dxOut, aclTensor* dgammaOutOptional, aclTensor* dbetaOutOptional, uint64_t* workspaceSize, aclOpExecutor** executor)
aclnnStatus aclnnGroupNormSwishGrad(void* workspace, uint64_t workspaceSize, aclOpExecutor* executor, aclrtStream stream)
功能描述
GroupNormSwish的反向操作。
aclnnGroupNormSwishGradGetWorkspaceSize
参数说明:
dy (aclTensor*, 计算输入):输入张量,Device侧的aclTensor,反向计算的梯度,维度需大于一维,元素个数需要等于N*C*HxW,数据类型支持FLOAT32、FLOAT16、BFLOAT16,数据格式支持ND,支持非连续的Tensor。
mean (aclTensor*, 计算输入):输入张量,Device侧的aclTensor,正向计算的第二个输出,表示input分组后每个组的均值,元素个数需要等于N*group,数据类型支持FLOAT32、FLOAT16、BFLOAT16,数据类型与相同,其中
N
与的第0维度保持一致,数据格式支持ND,支持非连续的Tensor。rstd (aclTensor*, 计算输入):输入张量,Device侧的aclTensor,正向计算的第三个输出,表示input分组后每个组的标准差倒数,元素个数需要等于N*group,数据类型支持FLOAT32、FLOAT16、BFLOAT16,数据类型与相同,其中
N
与的第0维度保持一致,数据格式支持ND,支持非连续的Tensor。x (aclTensor*, 计算输入):输入张量,Device侧的aclTensor,正向的输入,维度需大于一维,数据类型支持FLOAT32、FLOAT16、BFLOAT16,数据格式支持ND,支持非连续的Tensor。
gamma (aclTensor*, 计算输入):输入张量,Device侧的aclTensor,表示每个channel的缩放系数,维度为一维,元素个数需要等于C,数据类型支持FLOAT32、FLOAT16、BFLOAT16,数据格式支持ND,支持非连续的Tensor。
beta (aclTensor*, 计算输入):输入张量,Device侧的aclTensor,表示每个channel的偏移系数,维度为一维,元素个数需要等于C,数据类型支持FLOAT32、FLOAT16、BFLOAT16,数据类型与相同,数据格式支持ND,支持非连续的Tensor。
numGroups (int64_t, 计算输入):INT64常量,表示将输入gradOut的C维度分为group组,group需大于0,且C必须可以被group整除。
dataFormat (char*, 计算输入):表示数据格式,建议值NCHW。
swishScale (float, 计算输入):Swish计算公式中的系数,建议值1.0。
dxOut (aclTensor*, 计算输出):输出Tensor,Device侧的aclTensor,x的梯度,数据类型支持BFLOAT16、FLOAT16、FLOAT,数据类型和shape与相同,数据格式支持ND,支持非连续的Tensor。
dgammaOutOptional (aclTensor*, 计算输出):输出Tensor,Device侧的aclTensor,gamma的梯度,数据类型支持BFLOAT16、FLOAT16、FLOAT,数据类型和shape与相同,数据格式支持ND,支持非连续的Tensor。
dbetaOutOptional (aclTensor*, 计算输出):输出Tensor,Device侧的aclTensor,beta的梯度,数据类型支持BFLOAT16、FLOAT16、FLOAT,数据类型和shape与相同,数据格式支持ND,支持非连续的Tensor。
workspaceSize (uint64_t*, 出参):返回需要在Device侧申请的workspace大小。
executor (aclOpExecutor**, 出参):返回op执行器,包含算子计算流程。
返回值:
aclnnStatus: 返回状态码,具体参见aclnn返回码。
161001 ACLNN_ERR_PARAM_NULLPTR:1. 传入的dy、mean、rstd、x、gamma、beta、dx是空指针时。
161002 ACLNN_ERR_PARAM_INVALID:1. dy数据类型不在支持的范围之内。
2. mean、rstd、x、gamma、beta的数据类型与dy不同。
3. dxOut的数据类型与dy不同。
6. group不大于0。
7. C不能被group整除。
8. dy的元素个数不等于 N * C * HxW。
9. mean的元素个数不等于 N * group。
10. rstd的元素个数不等于 N * group。
11. x的元素个数不等于 N * C * HxW。
12. gamma的元素个数不等于 C。
13. beta的元素个数不等于 C。
aclnnGroupNormSwishGrad
参数说明:
- workspace(void*, 入参):在Device侧申请的workspace内存地址。
- workspaceSize(uint64_t, 入参):在Device侧申请的workspace大小,由第一段接口aclnnGroupNormSwishGradGetWorkspaceSize获取。
- executor(aclOpExecutor*, 入参):op执行器,包含了算子计算流程。
- stream(aclrtStream, 入参):指定执行任务的AscendCL Stream流。
返回值:
aclnnStatus:返回状态码,具体参见aclnn返回码。
约束与限制
无
调用示例
示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例。
#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_group_norm_swish_grad.h"
#define CHECK_RET(cond, return_expr) \
do { \
if (!(cond)) { \
return_expr; \
} \
} while (0)
#define LOG_PRINT(message, ...) \
do { \
printf(message, ##__VA_ARGS__); \
} while (0)
int64_t GetShapeSize(const std::vector<int64_t>& shape) {
int64_t shape_size = 1;
for (auto i : shape) {
shape_size *= i;
}
return shape_size;
}
int Init(int32_t deviceId, aclrtStream* stream) {
// 固定写法,AscendCL初始化
auto ret = aclInit(nullptr);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
ret = aclrtSetDevice(deviceId);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
ret = aclrtCreateStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
return 0;
}
template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
aclDataType dataType, aclTensor** tensor) {
auto size = GetShapeSize(shape) * sizeof(T);
// 调用aclrtMalloc申请device侧内存
auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
// 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
// 计算连续tensor的strides
std::vector<int64_t> strides(shape.size(), 1);
for (int64_t i = shape.size() - 2; i >= 0; i--) {
strides[i] = shape[i + 1] * strides[i + 1];
}
// 调用aclCreateTensor接口创建aclTensor
*tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
shape.data(), shape.size(), *deviceAddr);
return 0;
}
int main() {
// 1. (固定写法)device/stream初始化, 参考acl对外接口列表
// 根据自己的实际device填写deviceId
int32_t deviceId = 0;
aclrtStream stream;
auto ret = Init(deviceId, &stream);
// check根据自己的需要处理
CHECK_RET(ret == 0, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
// 2. 构造输入与输出,需要根据API的接口自定义构造
std::vector<int64_t> dyShape = {2, 3, 4};
std::vector<int64_t> meanShape = {2, 1};
std::vector<int64_t> rstdShape = {2, 1};
std::vector<int64_t> xShape = {2, 3, 4};
std::vector<int64_t> gammaShape = {3};
std::vector<int64_t> betaShape = {3};
std::vector<int64_t> dxOutShape = {2, 3, 4};
std::vector<int64_t> dgammaOutShape = {3};
std::vector<int64_t> dbetaOutShape = {3};
void* dyDeviceAddr = nullptr;
void* meanDeviceAddr = nullptr;
void* rstdDeviceAddr = nullptr;
void* xDeviceAddr = nullptr;
void* gammaDeviceAddr = nullptr;
void* betaDeviceAddr = nullptr;
void* dxOutDeviceAddr = nullptr;
void* dgammaOutDeviceAddr = nullptr;
void* dbetaOutDeviceAddr = nullptr;
aclTensor* dy = nullptr;
aclTensor* mean = nullptr;
aclTensor* rstd = nullptr;
aclTensor* x = nullptr;
aclTensor* gamma = nullptr;
aclTensor* beta = nullptr;
aclTensor* dxOut = nullptr;
aclTensor* dgammaOut = nullptr;
aclTensor* dbetaOut = nullptr;
std::vector<float> dyHostData = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0,
13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0};
std::vector<float> meanHostData = {2.0, 2};
std::vector<float> rstdHostData = {2.0, 2};
std::vector<float> xHostData = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0,
13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0};
std::vector<float> gammaHostData = {2.0, 2, 2};
std::vector<float> betaHostData = {2.0, 2, 2};
std::vector<float> dxOutHostData = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0,
13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0};
std::vector<float> dgammaOutHostData = {2.0, 2, 2};
std::vector<float> dbetaOutHostData = {2.0, 2, 2};
int64_t group = 1;
char* dataFormat = nullptr;
float swishScale = 1.0f;
bool dgammaIsRequire = true;
bool dbetaIsRequire = true;
// 创建dy aclTensor
ret = CreateAclTensor(dyHostData, dyShape, &dyDeviceAddr, aclDataType::ACL_FLOAT, &dy);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建mean aclTensor
ret = CreateAclTensor(meanHostData, meanShape, &meanDeviceAddr, aclDataType::ACL_FLOAT, &mean);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建rstd aclTensor
ret = CreateAclTensor(rstdHostData, rstdShape, &rstdDeviceAddr, aclDataType::ACL_FLOAT, &rstd);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建x aclTensor
ret = CreateAclTensor(xHostData, xShape, &xDeviceAddr, aclDataType::ACL_FLOAT, &x);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建gamma aclTensor
ret = CreateAclTensor(gammaHostData, gammaShape, &gammaDeviceAddr, aclDataType::ACL_FLOAT, &gamma);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建beta aclTensor
ret = CreateAclTensor(betaHostData, betaShape, &betaDeviceAddr, aclDataType::ACL_FLOAT, &beta);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建dxOut aclTensor
ret = CreateAclTensor(dxOutHostData, dxOutShape, &dxOutDeviceAddr, aclDataType::ACL_FLOAT, &dxOut);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建dgammaOut aclTensor
ret = CreateAclTensor(dgammaOutHostData, dgammaOutShape, &dgammaOutDeviceAddr, aclDataType::ACL_FLOAT, &dgammaOut);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建dbetaOut aclTensor
ret = CreateAclTensor(dbetaOutHostData, dbetaOutShape, &dbetaOutDeviceAddr, aclDataType::ACL_FLOAT, &dbetaOut);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 3. 调用CANN算子库API,需要修改为具体的API
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
// 调用aclnnGroupNormSwishGrad第一段接口
ret = aclnnGroupNormSwishGradGetWorkspaceSize(dy, mean, rstd, x, gamma, beta, group, dataFormat, swishScale, dgammaIsRequire, dbetaIsRequire, dxOut, dgammaOut, dbetaOut, &workspaceSize, &executor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnGroupNormSwishGradGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
void* workspaceAddr = nullptr;
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret;);
}
// 调用aclnnGroupNormSwishGrad第二段接口
ret = aclnnGroupNormSwishGrad(workspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnGroupNormSwishGrad failed. ERROR: %d\n", ret); return ret);
// 4. (固定写法)同步等待任务执行结束
ret = aclrtSynchronizeStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
// 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
auto size = GetShapeSize(dxOutShape);
ret = aclrtMemcpy(dxOutHostData.data(), dxOutHostData.size() * sizeof(dxOutHostData[0]), dxOutDeviceAddr, size * sizeof(float),
ACL_MEMCPY_DEVICE_TO_HOST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
for (int64_t i = 0; i < size; i++) {
LOG_PRINT("dxOutHostData[%ld] is: %f\n", i, dxOutHostData[i]);
}
size = GetShapeSize(dgammaOutShape);
ret = aclrtMemcpy(dgammaOutHostData.data(), dgammaOutHostData.size() * sizeof(dgammaOutHostData[0]), dgammaOutDeviceAddr, size * sizeof(float),
ACL_MEMCPY_DEVICE_TO_HOST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
for (int64_t i = 0; i < size; i++) {
LOG_PRINT("dgammaOutHostData[%ld] is: %f\n", i, dgammaOutHostData[i]);
}
size = GetShapeSize(dbetaOutShape);
ret = aclrtMemcpy(dbetaOutHostData.data(), dbetaOutHostData.size() * sizeof(dbetaOutHostData[0]), dbetaOutDeviceAddr, size * sizeof(float),
ACL_MEMCPY_DEVICE_TO_HOST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
for (int64_t i = 0; i < size; i++) {
LOG_PRINT("dbetaOutHostData[%ld] is: %f\n", i, dbetaOutHostData[i]);
}
// 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
aclDestroyTensor(dy);
aclDestroyTensor(mean);
aclDestroyTensor(rstd);
aclDestroyTensor(x);
aclDestroyTensor(gamma);
aclDestroyTensor(beta);
aclDestroyTensor(dxOut);
aclDestroyTensor(dgammaOut);
aclDestroyTensor(dbetaOut);
// 7. 释放device资源,需要根据具体API的接口定义修改
aclrtFree(dyDeviceAddr);
aclrtFree(meanDeviceAddr);
aclrtFree(rstdDeviceAddr);
aclrtFree(xDeviceAddr);
aclrtFree(gammaDeviceAddr);
aclrtFree(betaDeviceAddr);
aclrtFree(dxOutDeviceAddr);
aclrtFree(dgammaOutDeviceAddr);
aclrtFree(dbetaOutDeviceAddr);
if (workspaceSize > 0) {
aclrtFree(workspaceAddr);
}
aclrtDestroyStream(stream);
aclrtResetDevice(deviceId);
aclFinalize();
return 0;
}