下载
中文
注册

aclnnKlDiv

支持的产品型号

  • Atlas 推理系列产品
  • Atlas 训练系列产品
  • Atlas A2 训练系列产品/Atlas 800I A2 推理产品

接口原型

每个算子分为两段式接口,必须先调用“aclnnKlDivGetWorkspaceSize”接口获取入参并根据计算流程计算所需workspace大小,再调用“aclnnKlDiv”接口执行计算。

  • aclnnStatus aclnnKlDivGetWorkspaceSize(const aclTensor *self, const aclTensor *target, int64_t reduction, bool logTarget, aclTensor *out, uint64_t *workspaceSize, aclOpExecutor **executor)
  • aclnnStatus aclnnKlDiv(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)

功能描述

  • 算子功能:计算KL散度
  • 计算公式:
    • 定义loss_pointwise,保存中间结果。

      loss_pointwisei={NaN if logTarget=false and targeti<=0,targeti(log(targeti)log(selfi)) if logTarget=falseexptargeti(targetilog(selfi)) else. loss\_pointwise_i=\begin{cases} NaN & \text{ if }&logTarget=false \text{ and } target_i <= 0, \\ target_i * \left ( \log{(target_i)}- \log{(self_i)} \right ) & \text{ if }& logTarget=false, \\ \exp^ {target_i} * \left ( target_i- \log{(self_i)} \right ) & \text{ else. } \end{cases}
    • out计算公式为:

      out={loss_pointwiseself.size(0) if reduction=1,loss_pointwise elif reduction=2,loss_pointwise else. out=\begin{cases} \frac{\sum loss\_pointwise}{self.size(0)} & \text{ if }& reduction= 1, \\ \sum loss\_pointwise & \text{ elif }& reduction= 2,\\ loss\_pointwise & \text{ else. } \end{cases}

aclnnKlDivGetWorkspaceSize

  • 参数说明

    • self (aclTensor*,计算输入):公式中的self。Device侧的aclTensor。且数据类型与target的数据类型需满足数据类型推导规则(参见互推导关系),shape需要与target满足broadcast关系。支持非连续的Tensor数据格式支持ND。
      • Atlas A2 训练系列产品/Atlas 800I A2 推理产品:FLOAT、FLOAT16、BFLOAT16
      • Atlas 推理系列产品Atlas 训练系列产品:FLOAT、FLOAT16
    • target (aclTensor*, 计算输入):公式中的target。且数据类型与self的数据类型需满足数据类型推导规则(参见互推导关系),shape需要与self满足broadcast关系。支持非连续的Tensor数据格式支持ND。
      • Atlas A2 训练系列产品/Atlas 800I A2 推理产品:FLOAT、FLOAT16、BFLOAT16
      • Atlas 推理系列产品Atlas 训练系列产品:FLOAT、FLOAT16
    • reduction (int64_t,计算输入): 公式中的reduction,指定计算完loss_pointwise之后的操作。
      • 0:none,表示不做reduction操作。
      • 1:batchmean,表示对loss_pointwise取平均,再给out。
      • 2:sum,表示对loss_pointwise求和,再给out。
    • logTarget(bool,计算输入): 指定传入的target数据是否已经做过log操作。
    • out (aclTensor*,计算输出):公式中的out。数据类型与self的数据类型需满足数据类型推导规则(参见互推导关系)。当reduction为 0 时,shape需要与self满足broadcast关系。当reduction不为0时,shape固定为(1,)。数据格式支持ND。
      • Atlas A2 训练系列产品/Atlas 800I A2 推理产品:FLOAT、FLOAT16、BFLOAT16
      • Atlas 推理系列产品Atlas 训练系列产品:FLOAT、FLOAT16
    • workspaceSize(uint64_t*,出参):返回需要在Device侧申请的workspace大小。
    • executor(aclOpExecutor**,出参):返回op执行器,包含了算子计算流程。
  • 返回值

    aclnnStatus:返回状态码,具体参见aclnn返回码

    第一段接口完成入参校验,出现以下场景时报错:
    返回161001 (ACLNN_ERR_PARAM_NULLPTR):1. 传入的 self 或 target 或 out 是空指针。
    返回161002 (ACLNN_ERR_PARAM_INVALID):1. self 或 target 或 out 的数据类型不在支持的范围之内。
                                         1. self 的 shape 不能与 target broadcast。 
                                         2. self 或 target 不能转换成 out 的数据类型。
                                         3. self 或 target 的shape dim大于8。

aclnnKlDiv

  • 参数说明

    • workspace(void*, 入参):在Device侧申请的workspace内存地址。
    • workspaceSize(uint64_t, 入参):在Device侧申请的workspace大小,由第一段接口aclnnKlDivGetWorkspaceSize获取。
    • executor(aclOpExecutor*, 入参):op执行器,包含了算子计算流程。
    • stream(aclrtStream, 入参):指定执行任务的AscendCL Stream流。
  • 返回值

    aclnnStatus:返回状态码,具体参见aclnn返回码

约束与限制

调用示例

示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例

#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_kl_div.h"

#define CHECK_RET(cond, return_expr) \
  do {                               \
    if (!(cond)) {                   \
      return_expr;                   \
    }                                \
  } while (0)

#define LOG_PRINT(message, ...)     \
  do {                              \
    printf(message, ##__VA_ARGS__); \
  } while (0)

int64_t GetShapeSize(const std::vector<int64_t>& shape) {
  int64_t shape_size = 1;
  for (auto i : shape) {
    shape_size *= i;
  }
  return shape_size;
}

int Init(int32_t deviceId, aclrtStream* stream) {
  // 固定写法,AscendCL初始化
  auto ret = aclInit(nullptr);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
  ret = aclrtSetDevice(deviceId);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
  ret = aclrtCreateStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);

  return 0;
}

template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
                    aclDataType dataType, aclTensor** tensor) {
  auto size = GetShapeSize(shape) * sizeof(T);
  // 调用aclrtMalloc申请device侧内存
  auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);

  // 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
  ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);

  // 计算连续tensor的strides
  std::vector<int64_t> strides(shape.size(), 1);
  for (int64_t i = shape.size() - 2; i >= 0; i--) {
    strides[i] = shape[i + 1] * strides[i + 1];
  }

  // 调用aclCreateTensor接口创建aclTensor
  *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
                            shape.data(), shape.size(), *deviceAddr);
  return 0;
}

int main() {
  // 1. (固定写法)device/stream初始化, 参考AscendCL对外接口列表
  // 根据自己的实际device填写deviceId
  int32_t deviceId = 0;
  aclrtStream stream;
  auto ret = Init(deviceId, &stream);
  // check根据自己的需要处理
  CHECK_RET(ret == 0, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
  // 2. 构造输入与输出,需要根据API的接口自定义构造
  std::vector<int64_t> selfShape = {4, 2};
  std::vector<int64_t> targetShape = {4, 2};
  std::vector<int64_t> outShape = {1};
  void* selfDeviceAddr = nullptr;
  void* targetDeviceAddr = nullptr;
  void* outDeviceAddr = nullptr;
  aclTensor* self = nullptr;
  aclTensor* target = nullptr;
  aclTensor* out = nullptr;
  std::vector<float> selfHostData = {0, 1, 2, 3, 4, 5, 6, 7};
  std::vector<float> targetHostData = {1, 1, 1, 2, 2, 2, 3, 3};
  std::vector<float> outHostData = {1};
  int64_t reduction = 1;
  bool log_target = false;
  // 创建self aclTensor
  ret = CreateAclTensor(selfHostData, selfShape, &selfDeviceAddr, aclDataType::ACL_FLOAT, &self);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建target aclTensor
  ret = CreateAclTensor(targetHostData, targetShape, &targetDeviceAddr, aclDataType::ACL_FLOAT, &target);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建out aclTensor
  ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT, &out);
  CHECK_RET(ret == ACL_SUCCESS, return ret);

  // 3. 调用CANN算子库API
  uint64_t workspaceSize = 0;
  aclOpExecutor* executor;
  // 调用aclnnKlDiv第一段接口
  ret = aclnnKlDivGetWorkspaceSize(self, target, reduction, log_target, out, &workspaceSize, &executor);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnKlDivGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
  // 根据第一段接口计算出的workspaceSize申请device内存
  void* workspaceAddr = nullptr;
  if (workspaceSize > 0) {
    ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret;);
  }
  // 调用aclnnKlDiv第二段接口
  ret = aclnnKlDiv(workspaceAddr, workspaceSize, executor, stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnKlDiv failed. ERROR: %d\n", ret); return ret);
  // 4. (固定写法)同步等待任务执行结束
  ret = aclrtSynchronizeStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
  // 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
  auto size = GetShapeSize(outShape);
  std::vector<float> resultData(size, 0);
  ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), outDeviceAddr, size * sizeof(float),
                    ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
  for (int64_t i = 0; i < size; i++) {
    LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]);
  }

  // 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
  aclDestroyTensor(self);
  aclDestroyTensor(target);
  aclDestroyTensor(out);

  // 7. 释放device资源,需要根据具体API的接口定义修改
  aclrtFree(selfDeviceAddr);
  aclrtFree(targetDeviceAddr);
  aclrtFree(outDeviceAddr);
  if (workspaceSize > 0) {
    aclrtFree(workspaceAddr);
  }
  aclrtDestroyStream(stream);
  aclrtResetDevice(deviceId);
  aclFinalize();
  return 0;
}