下载
中文
注册

aclnnLerp&aclnnInplaceLerp

支持的产品型号

  • Atlas 推理系列产品
  • Atlas 训练系列产品
  • Atlas A2 训练系列产品/Atlas 800I A2 推理产品

接口原型

  • aclnnLerp和aclnnInplaceLerp实现相同的功能,使用区别如下,请根据自身实际场景选择合适的算子。

    • aclnnLerp:需新建一个输出张量对象存储计算结果。
    • aclnnInplaceLerp:无需新建输出张量对象,直接在输入张量的内存中存储计算结果。
  • 每个算子分为两段式接口,必须先调用“aclnnLerpGetWorkspaceSize”或者“aclnnInplaceLerpGetWorkspaceSize”接口获取计算所需workspace大小以及包含了算子计算流程的执行器,再调用“aclnnLerp”或者“aclnnInplaceLerp”接口执行计算。

    • aclnnStatus aclnnLerpGetWorkspaceSize(const aclTensor* self, const aclTensor* end, const aclTensor* weight, aclTensor* out, uint64_t* workspaceSize, aclOpExecutor** executor)
    • aclnnStatus aclnnLerp(void* workspace, uint64_t workspaceSize, aclOpExecutor* executor, aclrtStream stream)
    • aclnnStatus aclnnInplaceLerpGetWorkspaceSize(aclTensor* selfRef, const aclTensor* end, const aclTensor* weight, uint64_t* workspaceSize, aclOpExecutor** executor)
    • aclnnStatus aclnnInplaceLerp(void* workspace, uint64_t workspaceSize, aclOpExecutor* executor, aclrtStream stream)

功能描述

  • 算子功能:根据给定的权重,在起始和结束Tensor之间进行线性插值,返回插值后的Tensor。

  • 计算公式:

     out i= start i+ weight i×( end i start i)\text { out }_i=\text { start }_i+\text { weight }_i \times\left(\text { end }_i-\text { start }_i\right)

aclnnLerpGetWorkspaceSize

  • 参数说明

    • self(aclTensor*, 计算输入):公式中的输入start,Device侧的aclTensor,self与end、weight、out的数据类型一致,self与end、weight的shape满足broadcast关系。支持非连续的Tensor数据格式支持ND。
      • Atlas 推理系列产品Atlas 训练系列产品:数据类型支持FLOAT16、FLOAT。
      • Atlas A2 训练系列产品/Atlas 800I A2 推理产品:数据类型支持BFLOAT16、FLOAT16、FLOAT。
    • end(aclTensor*, 计算输入):公式中的输入end,Device侧的aclTensor,self与end、weight、out的数据类型一致,self与end、weight的shape满足broadcast关系。支持非连续的Tensor数据格式支持ND。
      • Atlas 推理系列产品Atlas 训练系列产品:数据类型支持FLOAT16、FLOAT。
      • Atlas A2 训练系列产品/Atlas 800I A2 推理产品:数据类型支持BFLOAT16、FLOAT16、FLOAT。
    • weight(aclTensor*, 计算输入):公式中的输入weight,Device侧的aclTensor,self与end、weight、out的数据类型一致,self与end、weight的shape满足broadcast关系。支持非连续的Tensor数据格式支持ND。
      • Atlas 推理系列产品Atlas 训练系列产品:数据类型支持FLOAT16、FLOAT。
      • Atlas A2 训练系列产品/Atlas 800I A2 推理产品:数据类型支持BFLOAT16、FLOAT16、FLOAT。
    • out(aclTensor*, 计算输出):公式中的out,Device侧的aclTensor,self与end、weight、out的数据类型一致,out与self、end和weight broadcast之后的tensor的shape一致。支持非连续的Tensor数据格式支持ND。
      • Atlas 推理系列产品Atlas 训练系列产品:数据类型支持FLOAT16、FLOAT。
      • Atlas A2 训练系列产品/Atlas 800I A2 推理产品:数据类型支持BFLOAT16、FLOAT16、FLOAT。
    • workspaceSize(uint64_t*, 出参):返回需要在Device侧申请的workspace大小。
    • executor(aclOpExecutor**, 出参):返回op执行器,包含了算子计算流程。
  • 返回值

    aclnnStatus:返回状态码,具体参见aclnn返回码

    第一段接口完成入参校检,出现以下场景时报错:
    返回161001(ACLNN_ERR_PARAM_NULLPTR):1.传入的self、end、weight和out是空指针。
    返回161002(ACLNN_ERR_PARAM_INVALID):1.self、end、weight和out的数据类型不在支持的范围之内。
                                        2.self、end、weight和out的数据类型不一致。
                                        3.self、end和weight无法做broadcast。
                                        4.self、end和weight做broadcast后的shape与out的shape不一致。

aclnnLerp

  • 参数说明

    • workspace(void*, 入参):在Device侧申请的workspace内存地址。
    • workspaceSize(uint64_t, 入参):在Device侧申请的workspace大小,由第一段接口aclnnLerpGetWorkspaceSize获取。
    • executor(aclOpExecutor*, 入参):op执行器,包含了算子计算流程。
    • stream(aclrtStream, 入参):指定执行任务的AscendCL Stream流。
  • 返回值

    aclnnStatus:返回状态码,具体参见aclnn返回码

aclnnInplaceLerpGetWorkspaceSize

  • 参数说明

    • selfRef(aclTensor*, 计算输入/输出):公式中的输入start和输出out,Device侧的aclTensor,selfRef与end、weight的数据类型一致,selfRef与end、weight的shape满足broadcast关系,且broadcast后的shape与selfRef一致。支持非连续的Tensor数据格式支持ND。
      • Atlas 推理系列产品Atlas 训练系列产品:数据类型支持FLOAT16、FLOAT。
      • Atlas A2 训练系列产品/Atlas 800I A2 推理产品:数据类型支持BFLOAT16、FLOAT16、FLOAT。
    • end(aclTensor*, 计算输入):公式中的输入end,Device侧的aclTensor,selfRef与end、weight的数据类型一致,selfRef与end、weight的shape满足broadcast关系,且broadcast后的shape与selfRef一致。支持非连续的Tensor数据格式支持ND。
      • Atlas 推理系列产品Atlas 训练系列产品:数据类型支持FLOAT16、FLOAT。
      • Atlas A2 训练系列产品/Atlas 800I A2 推理产品:数据类型支持BFLOAT16、FLOAT16、FLOAT。
    • weight(aclTensor*, 计算输入):公式中的输入weight,Device侧的aclTensor,selfRef与end、weight的数据类型一致,selfRef与end、weight的shape满足broadcast关系。支持非连续的Tensor数据格式支持ND。
      • Atlas 推理系列产品Atlas 训练系列产品:数据类型支持FLOAT16、FLOAT。
      • Atlas A2 训练系列产品/Atlas 800I A2 推理产品:数据类型支持BFLOAT16、FLOAT16、FLOAT。
    • workspaceSize(uint64_t*, 出参):返回需要在Device侧申请的workspace大小。
    • executor(aclOpExecutor**, 出参):返回op执行器,包含了算子计算流程。
  • 返回值

    aclnnStatus:返回状态码,具体参见aclnn返回码

    第一段接口完成入参校检,出现以下场景时报错:
    返回161001(ACLNN_ERR_PARAM_NULLPTR):1.传入的selfRef、end和weight是空指针。
    返回161002(ACLNN_ERR_PARAM_INVALID):1.selfRef、end和weight的数据类型不在支持的范围之内。
                                          2.selfRef、end和weight的数据类型不一致。
                                          3.selfRef、end和weight无法做broadcast。
                                          4.selfRef、end和weight做broadcast后的shape与selfRef的shape不一致。

aclnnInplaceLerp

  • 参数说明

    • workspace(void*, 入参):在Device侧申请的workspace内存地址。
    • workspaceSize(uint64_t, 入参):在Device侧申请的workspace大小,由第一段接口aclnnInplaceLerpGetWorkspaceSize获取。
    • executor(aclOpExecutor*, 入参):op执行器,包含了算子计算流程。
    • stream(aclrtStream, 入参):指定执行任务的AscendCL Stream流。
  • 返回值

    aclnnStatus:返回状态码,具体参见aclnn返回码

约束与限制

调用示例

示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例

aclnnLerp

#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_lerp_tensor.h"

#define CHECK_RET(cond, return_expr) \
  do {                               \
    if (!(cond)) {                   \
      return_expr;                   \
    }                                \
  } while (0)

#define LOG_PRINT(message, ...)     \
  do {                              \
    printf(message, ##__VA_ARGS__); \
  } while (0)

int64_t GetShapeSize(const std::vector<int64_t>& shape) {
    int64_t shapeSize = 1;
    for (auto i : shape) {
        shapeSize *= i;
    }
    return shapeSize;
}

int Init(int32_t deviceId, aclrtStream* stream) {
    // 固定写法,AscendCL初始化
    auto ret = aclInit(nullptr);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
    ret = aclrtSetDevice(deviceId);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
    ret = aclrtCreateStream(stream);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
    return 0;
}

template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
                    aclDataType dataType, aclTensor** tensor) {
    auto size = GetShapeSize(shape) * sizeof(T);
    // 调用aclrtMalloc申请device侧内存
    auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
    // 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
    ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);

    // 计算连续tensor的strides
    std::vector<int64_t> strides(shape.size(), 1);
    for (int64_t i = shape.size() - 2; i >= 0; i--) {
        strides[i] = shape[i + 1] * strides[i + 1];
    }

    // 调用aclCreateTensor接口创建aclTensor
    *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
                              shape.data(), shape.size(), *deviceAddr);
    return 0;
}

int main() {
    // 1. (固定写法)device/stream初始化,参考AscendCL对外接口列表
    int32_t deviceId = 0;
    aclrtStream stream;
    auto ret = Init(deviceId, &stream);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);

    // 2. 构造输入与输出,需要根据API的接口自定义构造
    std::vector<int64_t> selfShape = {4, 2};
    std::vector<int64_t> endShape = {4, 2};
    std::vector<int64_t> weightShape = {1};
    std::vector<int64_t> outShape = {4, 2};
    void* selfDeviceAddr = nullptr;
    void* endDeviceAddr = nullptr;
    void* weightDeviceAddr = nullptr;
    void* outDeviceAddr = nullptr;
    aclTensor* self = nullptr;
    aclTensor* end = nullptr;
    aclTensor* weight = nullptr;
    aclTensor* out = nullptr;
    std::vector<float> selfHostData = {1, 2, 3, 4, 5, 6, 7, 8};
    std::vector<float> endHostData = {4, 5, 6, 7, 8, 9, 10, 11};
    std::vector<float> weightHostData = {2};
    std::vector<float> outHostData = {0, 0, 0, 0, 0, 0, 0, 0};
    // 创建self aclTensor
    ret = CreateAclTensor(selfHostData, selfShape, &selfDeviceAddr, aclDataType::ACL_FLOAT, &self);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    // 创建end aclTensor
    ret = CreateAclTensor(endHostData, endShape, &endDeviceAddr, aclDataType::ACL_FLOAT, &end);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    // 创建weight aclTensor
    ret = CreateAclTensor(weightHostData, weightShape, &weightDeviceAddr, aclDataType::ACL_FLOAT, &weight);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    // 创建out aclTensor
    ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT, &out);
    CHECK_RET(ret == ACL_SUCCESS, return ret);

    uint64_t workspaceSize = 0;
    aclOpExecutor* executor;

    // 3. 调用CANN算子库API
    // 调用aclnnLerp第一段接口
    ret = aclnnLerpGetWorkspaceSize(self, end, weight, out, &workspaceSize, &executor);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnLerpGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
    // 根据第一段接口计算出的workspaceSize申请device内存
    void* workspaceAddr = nullptr;
    if (workspaceSize > 0) {
        ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
        CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
    }
    // 调用aclnnLerp第二段接口
    ret = aclnnLerp(workspaceAddr, workspaceSize, executor, stream);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnLerp failed. ERROR: %d\n", ret); return ret);

    // 4. (固定写法)同步等待任务执行结束
    ret = aclrtSynchronizeStream(stream);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);

    // 5. 获取输出的值,将device侧内存上的结果拷贝至host侧
    auto size = GetShapeSize(outShape);
    std::vector<float> resultData(size, 0);
    ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), outDeviceAddr,
                      size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
    for (int64_t i = 0; i < size; i++) {
        LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]);
    }

    // 6. 释放aclTensor和aclScalar
    aclDestroyTensor(self);
    aclDestroyTensor(end);
    aclDestroyTensor(weight);
    aclDestroyTensor(out);
    
    // 7. 释放device资源,需要根据具体API的接口定义修改
    aclrtFree(selfDeviceAddr);
    aclrtFree(endDeviceAddr);
    aclrtFree(weightDeviceAddr);
    aclrtFree(outDeviceAddr);
    if (workspaceSize > 0) {
    aclrtFree(workspaceAddr);
    }
    aclrtDestroyStream(stream);
    aclrtResetDevice(deviceId);
    aclFinalize();
    return 0;
}

aclnnInplaceLerp

#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_lerp_tensor.h"

#define CHECK_RET(cond, return_expr) \
  do {                               \
    if (!(cond)) {                   \
      return_expr;                   \
    }                                \
  } while (0)

#define LOG_PRINT(message, ...)     \
  do {                              \
    printf(message, ##__VA_ARGS__); \
  } while (0)

int64_t GetShapeSize(const std::vector<int64_t>& shape) {
    int64_t shapeSize = 1;
    for (auto i : shape) {
        shapeSize *= i;
    }
    return shapeSize;
}

int Init(int32_t deviceId, aclrtStream* stream) {
    // 固定写法,AscendCL初始化
    auto ret = aclInit(nullptr);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
    ret = aclrtSetDevice(deviceId);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
    ret = aclrtCreateStream(stream);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
    return 0;
}

template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
                    aclDataType dataType, aclTensor** tensor) {
    auto size = GetShapeSize(shape) * sizeof(T);
    // 调用aclrtMalloc申请device侧内存
    auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
    // 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
    ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);

    // 计算连续tensor的strides
    std::vector<int64_t> strides(shape.size(), 1);
    for (int64_t i = shape.size() - 2; i >= 0; i--) {
        strides[i] = shape[i + 1] * strides[i + 1];
    }

    // 调用aclCreateTensor接口创建aclTensor
    *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
                              shape.data(), shape.size(), *deviceAddr);
    return 0;
}

int main() {
    // 1. (固定写法)device/stream初始化,参考AscendCL对外接口列表
    int32_t deviceId = 0;
    aclrtStream stream;
    auto ret = Init(deviceId, &stream);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);

    // 2. 构造输入与输出,需要根据API的接口自定义构造
    std::vector<int64_t> selfShape = {4, 2};
    std::vector<int64_t> endShape = {4, 2};
    std::vector<int64_t> weightShape = {1};
    void* selfDeviceAddr = nullptr;
    void* endDeviceAddr = nullptr;
    void* weightDeviceAddr = nullptr;
    aclTensor* self = nullptr;
    aclTensor* end = nullptr;
    aclTensor* weight = nullptr;
    std::vector<float> selfHostData = {1, 2, 3, 4, 5, 6, 7, 8};
    std::vector<float> endHostData = {4, 5, 6, 7, 8, 9, 10, 11};
    std::vector<float> weightHostData = {2};
    // 创建self aclTensor
    ret = CreateAclTensor(selfHostData, selfShape, &selfDeviceAddr, aclDataType::ACL_FLOAT, &self);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    // 创建end aclTensor
    ret = CreateAclTensor(endHostData, endShape, &endDeviceAddr, aclDataType::ACL_FLOAT, &end);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    // 创建weight aclTensor
    ret = CreateAclTensor(weightHostData, weightShape, &weightDeviceAddr, aclDataType::ACL_FLOAT, &weight);
    CHECK_RET(ret == ACL_SUCCESS, return ret);

    uint64_t workspaceSize = 0;
    aclOpExecutor* executor;
    
    // 3. 调用CANN算子库API
    // 调用aclnnInplaceLerp第一段接口
    ret = aclnnInplaceLerpGetWorkspaceSize(self, end, weight, &workspaceSize, &executor);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnLerpGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
    // 根据第一段接口计算出的workspaceSize申请device内存
    void* workspaceAddr = nullptr;
    if (workspaceSize > 0) {
        ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
        CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
    }
    // 调用aclnnInplaceLerp第二段接口
    ret = aclnnInplaceLerp(workspaceAddr, workspaceSize, executor, stream);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnLerp failed. ERROR: %d\n", ret); return ret);

    // 4. (固定写法)同步等待任务执行结束
    ret = aclrtSynchronizeStream(stream);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);

    // 5. 获取输出的值,将device侧内存上的结果拷贝至host侧
    auto size = GetShapeSize(selfShape);
    std::vector<float> resultData(size, 0);
    ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), selfDeviceAddr,
                      size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
    for (int64_t i = 0; i < size; i++) {
        LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]);
    }

    // 6. 释放aclTensor和aclScalar
    aclDestroyTensor(self);
    aclDestroyTensor(end);
    aclDestroyTensor(weight);
    
    // 7. 释放device资源,需要根据具体API的接口定义修改
    aclrtFree(selfDeviceAddr);
    aclrtFree(endDeviceAddr);
    aclrtFree(weightDeviceAddr);
    if (workspaceSize > 0) {
    aclrtFree(workspaceAddr);
    }
    aclrtDestroyStream(stream);
    aclrtResetDevice(deviceId);
    aclFinalize();
    return 0;
}