aclnnMseLossBackward
支持的产品型号
Atlas 推理系列产品 。Atlas 训练系列产品 。Atlas A2 训练系列产品/Atlas 800I A2 推理产品 。
接口原型
每个算子分为两段式接口,必须先调用“aclnnMseLossBackwardGetWorkspaceSize”接口获取计算所需workspace大小以及包含了算子计算流程的执行器,再调用“aclnnMseLossBackward”接口执行计算。
aclnnStatus aclnnMseLossBackwardGetWorkspaceSize(const aclTensor* gradOutput, const aclTensor* self, const aclTensor* target, int64_t reduction, aclTensor* out, uint64_t* workspaceSize, aclOpExecutor** executor)
aclnnStatus aclnnMseLossBackward(void* workspace, uint64_t workspaceSize, aclOpExecutor* executor, aclrtStream stream)
功能描述
算子功能:均方误差函数aclnnMseLoss的反向传播。
计算公式:
当
reduction
为mean
时:其中
x.numel()
表示x
中的元素个数。如果reduction
不是mean
, 那么:
aclnnMseLossBackwardGetWorkspaceSize
参数说明:
gradOutput(aclTensor*, 计算输入):公式中的输入
grad
,Device侧的aclTensor,gradOutput与self、target的数据类型一致,gradOutput与self、target的shape满足broadcast关系。支持非连续的Tensor,数据格式支持ND,shape支持0到8维。Atlas 推理系列产品 、Atlas 训练系列产品 :数据类型支持FLOAT16、FLOAT。Atlas A2 训练系列产品/Atlas 800I A2 推理产品 :数据类型支持BFLOAT16、FLOAT16、FLOAT。
self(aclTensor*, 计算输入):公式中的输入
x
,Device侧的aclTensor,gradOutput与self、target的数据类型一致,gradOutput与self、target的shape满足broadcast关系。支持非连续的Tensor,数据格式支持ND,shape支持0到8维。Atlas 推理系列产品 、Atlas 训练系列产品 :数据类型支持FLOAT16、FLOAT。Atlas A2 训练系列产品/Atlas 800I A2 推理产品 :数据类型支持BFLOAT16、FLOAT16、FLOAT。
target(aclTensor*, 计算输入):公式中的输入
y
,Device侧的aclTensor,gradOutput与self、target的数据类型一致,gradOutput与self、target的shape满足broadcast关系。支持非连续的Tensor,数据格式支持ND,shape支持0到8维。Atlas 推理系列产品 、Atlas 训练系列产品 :数据类型支持FLOAT16、FLOAT。Atlas A2 训练系列产品/Atlas 800I A2 推理产品 :数据类型支持BFLOAT16、FLOAT16、FLOAT。
reduction(int64_t, 计算输入):公式中的参数
reduction
,指定损失函数的计算方式,支持 0('none') | 1('mean') | 2('sum')。'none' 表示不应用减少,'mean' 表示输出的总和将除以self中的元素数,'sum' 表示输出将被求和。
out(aclTensor*, 计算输出):公式中的输出
MselossBackward(grad, x, y)
,Device侧的aclTensor,out与gradOutput、self、target broadcast之后的tensor的shape一致。支持非连续的Tensor,数据格式支持ND。Atlas 推理系列产品 、Atlas 训练系列产品 :数据类型支持FLOAT16、FLOAT。Atlas A2 训练系列产品/Atlas 800I A2 推理产品 :数据类型支持BFLOAT16、FLOAT16、FLOAT。
workspaceSize(uint64_t*, 出参):返回需要在Device侧申请的workspace大小。
executor(aclOpExecutor**, 出参):返回op执行器,包含了算子计算流程。
返回值:
aclnnStatus:返回状态码,具体参见aclnn返回码。
第一段接口完成入参校验,出现如下场景时报错: 返回161001(ACLNN_ERR_PARAM_NULLPTR):1. 传入的gradOutput、self、target或out是空指针时。 返回161002(ACLNN_ERR_PARAM_INVALID):1. self的数据类型不在支持的范围之内。 2. gradOutput、target的数据类型和self不同。 3. gradOutput、self和target的shape无法做broadcast。 4. gradOutput、self和target做broadcast后的shape与out的shape不一致。 5. reduction值不在0~2范围之内。 6. gradOutput、self或target的shape超过8维。
aclnnMseLossBackward
参数说明:
workspace(void*, 入参):在Device侧申请的workspace内存地址。
workspaceSize(uint64_t, 入参):在Device侧申请的workspace大小,由第一段接口aclnnMseLossBackwardGetWorkspaceSize获取。
executor(aclOpExecutor*, 入参):op执行器,包含了算子计算流程。
stream(aclrtStream, 入参):指定执行任务的AscendCL Stream流。
返回值:
aclnnStatus:返回状态码,具体参见aclnn返回码。
约束与限制
无。
调用示例
示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例。
#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_mse_loss_backward.h"
#define CHECK_RET(cond, return_expr) \
do { \
if (!(cond)) { \
return_expr; \
} \
} while (0)
#define LOG_PRINT(message, ...) \
do { \
printf(message, ##__VA_ARGS__); \
} while (0)
int64_t GetShapeSize(const std::vector<int64_t>& shape) {
int64_t shapeSize = 1;
for (auto i : shape) {
shapeSize *= i;
}
return shapeSize;
}
int Init(int32_t deviceId, aclrtStream* stream) {
// 固定写法,AscendCL初始化
auto ret = aclInit(nullptr);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
ret = aclrtSetDevice(deviceId);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
ret = aclrtCreateStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
return 0;
}
template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
aclDataType dataType, aclTensor** tensor) {
auto size = GetShapeSize(shape) * sizeof(T);
// 调用aclrtMalloc申请device侧内存
auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
// 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
// 计算连续tensor的strides
std::vector<int64_t> strides(shape.size(), 1);
for (int64_t i = shape.size() - 2; i >= 0; i--) {
strides[i] = shape[i + 1] * strides[i + 1];
}
// 调用aclCreateTensor接口创建aclTensor
*tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
shape.data(), shape.size(), *deviceAddr);
return 0;
}
int main() {
// 1. (固定写法)device/stream初始化,参考AscendCL对外接口列表
// 根据自己的实际device填写deviceId
int32_t deviceId = 0;
aclrtStream stream;
auto ret = Init(deviceId, &stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
// 2. 构造输入与输出,需要根据API的接口自定义构造gradOutput
std::vector<int64_t> gradOutputShape = {2, 2};
std::vector<int64_t> selfShape = {2, 2};
std::vector<int64_t> targetShape = {2, 2};
std::vector<int64_t> outShape = {2, 2};
void* gradOutputDeviceAddr = nullptr;
void* selfDeviceAddr = nullptr;
void* targetDeviceAddr = nullptr;
void* outDeviceAddr = nullptr;
aclTensor* gradOutput = nullptr;
aclTensor* self = nullptr;
aclTensor* target = nullptr;
aclTensor* out = nullptr;
std::vector<float> gradOutputHostData = {0, 1, 2, 3};
std::vector<float> selfHostData = {0, 1, 2, 3};
std::vector<float> targetHostData = {1, 1, 1, 1};
std::vector<float> outHostData(4, 0);
// 创建gradOutput aclTensor
ret = CreateAclTensor(gradOutputHostData, gradOutputShape, &gradOutputDeviceAddr,
aclDataType::ACL_FLOAT, &gradOutput);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建self aclTensor
ret = CreateAclTensor(selfHostData, selfShape, &selfDeviceAddr, aclDataType::ACL_FLOAT, &self);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建target aclTensor
ret = CreateAclTensor(targetHostData, targetShape, &targetDeviceAddr, aclDataType::ACL_FLOAT, &target);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建out aclTensor
ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT, &out);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建reduction
int64_t reduction = 1;
// 3. 调用CANN算子库API,需要修改为具体的Api名称
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
// 调用aclnnMseLossBackward第一段接口
ret = aclnnMseLossBackwardGetWorkspaceSize(gradOutput, self, target, reduction, out, &workspaceSize, &executor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnMseLossBackwardGetWorkspaceSize failed. ERROR: %d\n", ret);
return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
void* workspaceAddr = nullptr;
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
}
// 调用aclnnMseLossBackward第二段接口
ret = aclnnMseLossBackward(workspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnMseLossBackward failed. ERROR: %d\n", ret); return ret);
// 4. (固定写法)同步等待任务执行结束
ret = aclrtSynchronizeStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
// 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
auto size = GetShapeSize(outShape);
std::vector<float> resultData(size, 0);
ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), outDeviceAddr,
size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
for (int64_t i = 0; i < size; i++) {
LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]);
}
// 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
aclDestroyTensor(gradOutput);
aclDestroyTensor(self);
aclDestroyTensor(target);
aclDestroyTensor(out);
// 7. 释放device资源,需要根据具体API的接口定义修改
aclrtFree(gradOutputDeviceAddr);
aclrtFree(selfDeviceAddr);
aclrtFree(targetDeviceAddr);
aclrtFree(outDeviceAddr);
if (workspaceSize > 0) {
aclrtFree(workspaceAddr);
}
aclrtDestroyStream(stream);
aclrtResetDevice(deviceId);
aclFinalize();
return 0;
}