下载
中文
注册

aclnnNLLLoss2d

支持的产品型号

  • Atlas 推理系列产品
  • Atlas 训练系列产品
  • Atlas A2 训练系列产品/Atlas 800I A2 推理产品

接口原型

每个算子分为两段式接口,必须先调用“aclnnNLLLoss2dGetWorkspaceSize”接口获取计算所需workspace大小以及包含了算子计算流程的执行器,再调用“aclnnNLLLoss2d”接口执行计算。

  • aclnnStatus aclnnNLLLoss2dGetWorkspaceSize(const aclTensor *self, const aclTensor *target, const aclTensor *weight, int64_t reduction, int64_t ignoreIndex, aclTensor *out, aclTensor *totalWeightOut, uint64_t *workspaceSize, aclOpExecutor **executor)
  • aclnnStatus aclnnNLLLoss2d(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)

功能描述

  • 算子功能:计算负对数似然损失值。

  • 计算公式:

    reductionnone时:

    (x,y)=L={l1,,lN},ln=wynxn,yn,wc=weight[c]1{cignoreIndex},\ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad l_n = - w_{y_n} x_{n,y_n}, \quad w_{c} = \text{weight}[c] \cdot \mathbb{1}\{c \not= \text{ignoreIndex}\},

    其中xx是self, yy是target, ww是weight,NN是batch的大小. 如果reduction不是'none' , 那么:

    (x,y)={n=1N1n=1Nwynln,if reduction=‘mean’;n=1Nln,if reduction=‘sum’.\ell(x, y) = \begin{cases} \sum_{n=1}^N \frac{1}{\sum_{n=1}^N w_{y_n}} l_n, & \text{if reduction} = \text{`mean';}\\ \sum_{n=1}^N l_n, & \text{if reduction} = \text{`sum'.} \end{cases}

aclnnNLLLoss2dGetWorkspaceSize

  • 参数说明:

    • self(aclTensor*, 计算输入):Device侧的aclTensor,shape为4维, 第2维是C,C表示类别数。数据类型支持FLOAT、FLOAT16、BFLOAT16(仅Atlas A2 训练系列产品/Atlas 800I A2 推理产品支持),支持非连续的Tensor, 数据格式支持ND 。

    • target(aclTensor*, 计算输入):Device侧的aclTensor,表示真实标签,shape为3维,target的第1维与self的第1维相等、target的第2维与self的第3维相等、target的第3维与self的第4维相等, 其中每个元素的取值范围是[0, C - 1]。数据类型支持INT64、UINT8、INT32 ,支持非连续的Tensor数据格式支持ND 。

    • weight(aclTensor*, 计算输入):Device侧的aclTensor,表示每个类别的缩放权重,shape为(C,)。数据类型支持FLOAT、FLOAT16、BFLOAT16(仅Atlas A2 训练系列产品/Atlas 800I A2 推理产品支持),数据类型需要与self一致,支持非连续的Tensor数据格式支持ND 。

    • reduction(int64_t, 计算输入):Host侧的int64_t,指定要应用到输出的缩减,支持 0('none') | 1('mean') | 2('sum')。'none' 表示不应用减少,'mean' 表示输出的总和将除以输出中的元素数,'sum' 表示输出将被求和。

    • ignoreIndex(int64_t, 计算输入):Host侧的int64_t,指定一个被忽略且不影响输入梯度的目标值。

    • out(aclTensor*, 计算输出):Device侧的aclTensor,数据类型支持FLOAT、FLOAT16、BFLOAT16(仅Atlas A2 训练系列产品/Atlas 800I A2 推理产品支持),数据类型需要与self一致,当reduction为0('none')时,shape与target shape相同,否则为(1,)。数据格式支持ND(参考)。

    • totalWeightOut(aclTensor*, 计算输出):Device侧的aclTensor,数据类型支持FLOAT、FLOAT16、BFLOAT16(仅Atlas A2 训练系列产品/Atlas 800I A2 推理产品支持),数据类型需要与self一致,shape为(1,)。数据格式支持ND。

    • workspaceSize(uint64_t*, 出参):返回需要在Device侧申请的workspace大小。

    • executor(aclOpExecutor**, 出参):返回op执行器,包含了算子计算流程。

  • 返回值:

    aclnnStatus:返回状态码,具体参见aclnn返回码

    返回161001(ACLNN_ERR_PARAM_NULLPTR):1. 传入的self、target、weight、out、totalWeightOut为空指针。
    返回161002(ACLNN_ERR_PARAM_INVALID):1. self、target、weight、out或totalWeightOut的数据类型或
                                          数据格式不在支持的范围之内。
                                          2. self、weight、out或totalWeightOut的数据类型不一致。
                                          3. self、target、weight、out、totalWeightOut的shape和format不正确。
                                          4. reduction值不在0~2范围之内。

aclnnNLLLoss2d

  • 参数说明:

    • workspace(void*, 入参):在Device侧申请的workspace内存地址。

    • workspaceSize(uint64_t, 入参):在Device侧申请的workspace大小,由第一段接口aclnnNLLLoss2dGetWorkspaceSize获取。

    • executor(aclOpExecutor*, 入参):op执行器,包含了算子计算流程。

    • stream(aclrtStream, 入参):指定执行任务的AscendCL Stream流。

  • 返回值:

    aclnnStatus:返回状态码,具体参见aclnn返回码

约束与限制

无。

调用示例

示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例

#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_nll_loss2d.h"

#define CHECK_RET(cond, return_expr) \
  do {                               \
    if (!(cond)) {                   \
      return_expr;                   \
    }                                \
  } while (0)

#define LOG_PRINT(message, ...)     \
  do {                              \
    printf(message, ##__VA_ARGS__); \
  } while (0)

int64_t GetShapeSize(const std::vector<int64_t>& shape) {
  int64_t shapeSize = 1;
  for (auto i : shape) {
    shapeSize *= i;
  }
  return shapeSize;
}

int Init(int32_t deviceId, aclrtStream* stream) {
  // 固定写法,AscendCL初始化
  auto ret = aclInit(nullptr);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
  ret = aclrtSetDevice(deviceId);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
  ret = aclrtCreateStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
  return 0;
}

template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
                    aclDataType dataType, aclTensor** tensor) {
  auto size = GetShapeSize(shape) * sizeof(T);
  // 调用aclrtMalloc申请device侧内存
  auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
  // 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
  ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);

  // 计算连续tensor的strides
  std::vector<int64_t> strides(shape.size(), 1);
  for (int64_t i = shape.size() - 2; i >= 0; i--) {
    strides[i] = shape[i + 1] * strides[i + 1];
  }

  // 调用aclCreateTensor接口创建aclTensor
  *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND, shape.data(), shape.size(), *deviceAddr);
  return 0;
}

int main() {
  // 1. (固定写法)device/stream初始化,参考AscendCL对外接口列表
  // 根据自己的实际device填写deviceId
  int32_t deviceId = 0;
  aclrtStream stream;
  auto ret = Init(deviceId, &stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);

  // 2. 构造输入与输出,需要根据API的接口自定义构造
  std::vector<int64_t> selfShape = {1, 2, 3, 2};
  std::vector<int64_t> targetShape = {1, 3, 2};
  std::vector<int64_t> weightShape = {2};
  std::vector<int64_t> outShape = {1, 3, 2};
  std::vector<int64_t> totalWeightOutShape = {1};
  void* selfDeviceAddr = nullptr;
  void* targetDeviceAddr = nullptr;
  void* weightDeviceAddr = nullptr;
  void* outDeviceAddr = nullptr;
  void* totalWeightOutDeviceAddr = nullptr;
  aclTensor* self = nullptr;
  aclTensor* target = nullptr;
  aclTensor* weight = nullptr;
  aclTensor* out = nullptr;
  aclTensor* totalWeightOut = nullptr;
  std::vector<float> selfHostData = {0.1, 1.1, 2.1, 3.1, 4.1, 5.1, 6.1, 7.1, 8.1, 9.1, 10.1, 11.1};
  std::vector<int32_t> targetHostData = {1, 0, 1, 1, 2, 1};
  std::vector<float> weightHostData = {1.1, 1.2};
  std::vector<float> outHostData = {0, 0, 0, 0, 0, 0};
  std::vector<float> totalWeightOutHostData = {0};
  int64_t reduction = 0;
  int64_t ignoreIndex = -100;
  // 创建self aclTensor
  ret = CreateAclTensor(selfHostData, selfShape, &selfDeviceAddr, aclDataType::ACL_FLOAT, &self);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建other aclTensor
  ret = CreateAclTensor(targetHostData, targetShape, &targetDeviceAddr, aclDataType::ACL_INT32, &target);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建weight aclTensor
  ret = CreateAclTensor(weightHostData, weightShape, &weightDeviceAddr, aclDataType::ACL_FLOAT, &weight);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建out aclTensor
  ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT, &out);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建totalWeightOut aclTensor
  ret = CreateAclTensor(totalWeightOutHostData, totalWeightOutShape, &totalWeightOutDeviceAddr, aclDataType::ACL_FLOAT,
                        &totalWeightOut);
  CHECK_RET(ret == ACL_SUCCESS, return ret);

  // 3. 调用CANN算子库API,需要修改为具体的Api名称
  uint64_t workspaceSize = 0;
  aclOpExecutor* executor;
  // 调用aclnnNLLLoss2d第一段接口
  ret = aclnnNLLLoss2dGetWorkspaceSize(self, target, weight, reduction, ignoreIndex, out, totalWeightOut, &workspaceSize, &executor);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnNLLLoss2dGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
  // 根据第一段接口计算出的workspaceSize申请device内存
  void* workspaceAddr = nullptr;
  if (workspaceSize > 0) {
    ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
  }
  // 调用aclnnNLLLoss2d第二段接口
  ret = aclnnNLLLoss2d(workspaceAddr, workspaceSize, executor, stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnNLLLoss2d failed. ERROR: %d\n", ret); return ret);

  // 4. (固定写法)同步等待任务执行结束
  ret = aclrtSynchronizeStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);

  // 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
  auto size = GetShapeSize(outShape);
  std::vector<float> resultData(size, 0);
  ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), outDeviceAddr,
                    size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
  for (int64_t i = 0; i < size; i++) {
    LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]);
  }

  // 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
  aclDestroyTensor(self);
  aclDestroyTensor(target);
  aclDestroyTensor(weight);
  aclDestroyTensor(out);
  aclDestroyTensor(totalWeightOut);

  // 7. 释放device资源,需要根据具体API的接口定义修改
  aclrtFree(selfDeviceAddr);
  aclrtFree(targetDeviceAddr);
  aclrtFree(weightDeviceAddr);
  aclrtFree(outDeviceAddr);
  aclrtFree(totalWeightOutDeviceAddr);
  if (workspaceSize > 0) {
    aclrtFree(workspaceAddr);
  }
  aclrtDestroyStream(stream);
  aclrtResetDevice(deviceId);
  aclFinalize();
  return 0;
}