下载
中文
注册

aclnnNLLLoss2dBackward

支持的产品型号

  • Atlas 训练系列产品
  • Atlas A2 训练系列产品/Atlas 800I A2 推理产品

接口原型

  • 每个算子分为两段式接口,必须先调用“aclnnNLLLoss2dBackwardGetWorkspaceSize”接口获取计算所需workspace大小以及包含了算子计算流程的执行器,再调用“aclnnNLLLoss2dBackward”接口执行计算。

  • aclnnStatus aclnnNLLLoss2dBackwardGetWorkspaceSize(const aclTensor* gradOutput, const aclTensor* self, const aclTensor* target, const aclTensor* weight, int64_t reduction, int64_t ignoreIndex, aclTensor* totalWeight, aclTensor* out, uint64_t* workspaceSize, aclOpExecutor** executor)

  • aclnnStatus aclnnNLLLoss2dBackward(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)

功能描述

算子功能:负对数似然损失反向。

aclnnNLLLoss2dBackwardGetWorkspaceSize

  • 参数说明:

    • gradOutput(aclTensor*, 计算输入):Device侧的aclTensor,shape为三维(第一维是N)或者一维(且元素个数为1)。支持非连续的Tensor数据格式支持ND。

      • Atlas 训练系列产品:数据类型支持FLOAT、FLOAT16。
      • Atlas A2 训练系列产品/Atlas 800I A2 推理产品:数据类型支持FLOAT、FLOAT16、BFLOAT16。
    • self(aclTensor*, 计算输入):Device侧的aclTensor,shape为四维,第一维是N表示batch size,第二维是C表示类别。支持非连续的Tensor数据格式支持ND。要求self的第0维、第2维、第3维的shape分别与target的第0维、第1维、第2维的shape一致,否则返回false。

      • Atlas 训练系列产品:数据类型支持FLOAT、FLOAT16。
      • Atlas A2 训练系列产品/Atlas 800I A2 推理产品:数据类型支持FLOAT、FLOAT16、BFLOAT16。
    • target(aclTensor*, 计算输入):Device侧的aclTensor,表示真实标签,shape为三维,第一维是N,其中每个元素的取值范围是[0, C - 1],数据类型支持INT64、UINT8。支持非连续的Tensor数据格式支持ND。

    • weight(aclTensor*, 计算输入):Device侧的aclTensor,表示各个类别的权重,shape为(C, )。支持非连续的Tensor数据格式支持ND。

      • Atlas 训练系列产品:数据类型支持FLOAT、FLOAT16。
      • Atlas A2 训练系列产品/Atlas 800I A2 推理产品:数据类型支持FLOAT、FLOAT16、BFLOAT16。
    • reduction(int64_t, 计算输入):Host侧的int64_t,指定要应用到输出的缩减。支持 0('none') | 1('mean') | 2('sum')。'none' 表示不应用减少,'mean' 表示输出的总和将除以输出中的元素数,'sum' 表示输出将被求和。当reduction为0时,要求target的shape与gradOutput的shape一致,否则返回false。

    • ignoreIndex(int64_t, 计算输入):Host侧的int64_t,指定一个被忽略且不影响输入梯度的目标值。

    • totalWeight(aclTensor*, 计算输入):Device侧的aclTensor,数据类型与weight相同,shape为(1,),数据格式支持ND。

      • Atlas 训练系列产品:数据类型支持FLOAT、FLOAT16。
      • Atlas A2 训练系列产品/Atlas 800I A2 推理产品:数据类型支持FLOAT、FLOAT16、BFLOAT16。
    • out(aclTensor*, 计算输出):Device侧的aclTensor,shape与self相同。支持非连续的Tensor数据格式支持ND。数据类型跟self一致。

      • Atlas 训练系列产品:数据类型支持FLOAT、FLOAT16。
      • Atlas A2 训练系列产品/Atlas 800I A2 推理产品:数据类型支持FLOAT、FLOAT16、BFLOAT16。
    • workspaceSize(uint64_t*, 出参):返回需要在Device侧申请的workspace大小。

    • executor(aclOpExecutor**, 出参):返回op执行器,包含了算子计算流程。

  • 返回值:

    aclnnStatus:返回状态码,具体参见aclnn返回码

161001 (ACLNN_ERR_PARAM_NULLPTR): 1. 传入的gradOutput、self、target、weight、totalWeight或out是空指针。
161002 (ACLNN_ERR_PARAM_INVALID): 1. gradOutput、self、target、weight、totalWeight或out的数据类型不在支持的范围之内。
                                  2. target非3维tensor,self非4维tensor。
                                  3. weight的元素个数不是C。
                                  4. self的第0,2,3维的元素个数和target的第0,1,2维元素个数不相等。
                                  5. totalWeight的元素个数不是1。
                                  6. reduction是none时,gradOutput的维数不是3或者gradOutput的第0,1,2维的元素个数和target的第0,1,2维元素个数不相等。
                                  7. reduction不是none时,gradOutput的维数大于1或者元素个数不为1。
                                  8. reduction值不在0~2范围之内。

aclnnNLLLoss2dBackward

  • 参数说明:

    • workspace(void*, 入参):在Device侧申请的workspace内存地址。

    • workspaceSize(uint64_t, 入参):在Device侧申请的workspace大小,由第一段接口aclnnNLLLoss2dBackwardGetWorkspaceSize获取。

    • executor(aclOpExecutor*, 入参):op执行器,包含了算子计算流程。

    • stream(aclrtStream, 入参):指定执行任务的AscendCL Stream流。

  • 返回值:

    aclnnStatus:返回状态码,具体参见aclnn返回码

约束与限制

无。

调用示例

示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例

#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_nll_loss2d_backward.h"

#define CHECK_RET(cond, return_expr) \
  do {                               \
    if (!(cond)) {                   \
      return_expr;                   \
    }                                \
  } while (0)

#define LOG_PRINT(message, ...)     \
  do {                              \
    printf(message, ##__VA_ARGS__); \
  } while (0)

int64_t GetShapeSize(const std::vector<int64_t>& shape) {
  int64_t shapeSize = 1;
  for (auto i : shape) {
    shapeSize *= i;
  }
  return shapeSize;
}

int Init(int32_t deviceId, aclrtStream* stream) {
  // 固定写法,AscendCL初始化
  auto ret = aclInit(nullptr);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
  ret = aclrtSetDevice(deviceId);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
  ret = aclrtCreateStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
  return 0;
}

template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
                    aclDataType dataType, aclTensor** tensor) {
  auto size = GetShapeSize(shape) * sizeof(T);
  // 调用aclrtMalloc申请device侧内存
  auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
  // 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
  ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);

  // 计算连续tensor的strides
  std::vector<int64_t> strides(shape.size(), 1);
  for (int64_t i = shape.size() - 2; i >= 0; i--) {
    strides[i] = shape[i + 1] * strides[i + 1];
  }

  // 调用aclCreateTensor接口创建aclTensor
  *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
                            shape.data(), shape.size(), *deviceAddr);
  return 0;
}

int main() {
  // 1. (固定写法)device/stream初始化,参考AscendCL对外接口列表
  // 根据自己的实际device填写deviceId
  int32_t deviceId = 0;
  aclrtStream stream;
  auto ret = Init(deviceId, &stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);

  // 2. 构造输入与输出,需要根据API的接口自定义构造
  std::vector<int64_t> gradShape = {3, 1, 1};
  std::vector<int64_t> selfShape = {3, 5, 1, 1};
  std::vector<int64_t> targetShape = {3, 1, 1};
  std::vector<int64_t> weightShape = {5};
  std::vector<int64_t> totalWeightShape = {1};
  std::vector<int64_t> outShape = {3, 5, 1, 1};

  void* gradDeviceAddr = nullptr;
  void* selfDeviceAddr = nullptr;
  void* targetDeviceAddr = nullptr;
  void* weightDeviceAddr = nullptr;
  void* totalWeightDeviceAddr = nullptr;
  void* outDeviceAddr = nullptr;
  aclTensor* grad = nullptr;
  aclTensor* self = nullptr;
  aclTensor* target = nullptr;
  aclTensor* weight = nullptr;
  aclTensor* totalWeight = nullptr;
  aclTensor* out = nullptr;

  std::vector<float> gradHostData = {2.7, 2.6, 2.5};
  std::vector<float> selfHostData = {4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5.0, 5.1, 5.2, 5.3, 5.4, 5.5};
  std::vector<int64_t> targetHostData = {2, 3, 1};
  std::vector<float> weightHostData = {1.0, 1.0, 1.0, 1.0, 1.0};
  std::vector<float> totalWeightHostData = {1.0};
  std::vector<float> outHostData = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
  int64_t reduction = 0;
  int64_t ignoreIndex = -100;

  // 创建grad aclTensor
  ret = CreateAclTensor(gradHostData, gradShape, &gradDeviceAddr, aclDataType::ACL_FLOAT, &grad);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建self aclTensor
  ret = CreateAclTensor(selfHostData, selfShape, &selfDeviceAddr, aclDataType::ACL_FLOAT, &self);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建target aclTensor
  ret = CreateAclTensor(targetHostData, targetShape, &targetDeviceAddr, aclDataType::ACL_INT64, &target);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建weight aclTensor
  ret = CreateAclTensor(weightHostData, weightShape, &weightDeviceAddr, aclDataType::ACL_FLOAT, &weight);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建totalWeight aclTensor
  ret = CreateAclTensor(totalWeightHostData, totalWeightShape, &totalWeightDeviceAddr,
                        aclDataType::ACL_FLOAT, &totalWeight);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建out aclTensor
  ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT, &out);
  CHECK_RET(ret == ACL_SUCCESS, return ret);

  // 3. 调用CANN算子库API,需要修改为具体的Api名称
  uint64_t workspaceSize = 0;
  aclOpExecutor* executor;
  // 调用aclnnNLLLoss2dBackward第一段接口
  ret = aclnnNLLLoss2dBackwardGetWorkspaceSize(grad, self, target, weight, reduction, ignoreIndex, totalWeight, out,
                                               &workspaceSize, &executor);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnNLLLoss2dBackwardGetWorkspaceSize failed. ERROR: %d\n", ret);
            return ret);
  // 根据第一段接口计算出的workspaceSize申请device内存
  void* workspaceAddr = nullptr;
  if (workspaceSize > 0) {
    ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
  }
  // 调用aclnnNLLLoss2dBackward第二段接口
  ret = aclnnNLLLoss2dBackward(workspaceAddr, workspaceSize, executor, stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnNLLLoss2dBackward failed. ERROR: %d\n", ret); return ret);

  // 4. (固定写法)同步等待任务执行结束
  ret = aclrtSynchronizeStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);

  // 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
  auto size = GetShapeSize(outShape);
  std::vector<float> resultData(size, 0);
  ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), outDeviceAddr,
                    size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
  for (int64_t i = 0; i < size; i++) {
    LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]);
  }

  // 6. 释放aclTensor,需要根据具体API的接口定义修改
  aclDestroyTensor(grad);
  aclDestroyTensor(self);
  aclDestroyTensor(target);
  aclDestroyTensor(weight);
  aclDestroyTensor(totalWeight);
  aclDestroyTensor(out);

  // 7. 释放device 资源
  aclrtFree(gradDeviceAddr);
  aclrtFree(selfDeviceAddr);
  aclrtFree(targetDeviceAddr);
  aclrtFree(weightDeviceAddr);
  aclrtFree(totalWeightDeviceAddr);
  aclrtFree(outDeviceAddr);
  if (workspaceSize > 0) {
    aclrtFree(workspaceAddr);
  }
  aclrtDestroyStream(stream);
  aclrtResetDevice(deviceId);
  aclFinalize();

  return 0;
}