下载
中文
注册

aclnnNanMedianDim

支持的产品型号

  • Atlas 训练系列产品
  • Atlas A2 训练系列产品/Atlas 800I A2 推理产品

接口原型

每个算子分为两段式接口,必须先调用“aclnnNanMedianDimGetWorkspaceSize”接口获取计算所需workspace大小以及包含了算子计算流程的执行器,再调用“aclnnNanMedianDim”接口执行计算。

  • aclnnStatus aclnnNanMedianDimGetWorkspaceSize(const aclTensor* self, int64_t dim, bool keepDim, aclTensor* valuesOut, aclTensor* indicesOut, uint64_t* workspaceSize, aclOpExecutor** executor)
  • aclnnStatus aclnnNanMedianDim(void* workspace, uint64_t workspaceSize, aclOpExecutor* executor, aclrtStream stream)

功能描述

  • 算子功能:忽略NAN后,返回Tensor指定维度求中位数及所在位置。

  • 示例:

    • 示例1:
      当keepDim为True时,则将对应维度的size置为1,若为False,则删除对应维度。
      假设self的shape为[2, 3, 4],dim = 1,keepDim为true,则输出shape为[2, 1, 4]。
      假设self的shape为[2, 3, 4],dim = 1,keepDim为false,则输出shape为[2, 4]。
    • 示例2:
      关于输出shape的示例
      若输入
      self = tensor([[1, float('nan'), 3, 2],[-1, float('nan'), 3, 2]]) shape为[2, 4]
      dim = 0
      keepDim = true
      则输出
      valuesOut = tensor([[-1., float('nan'),  3.,  2.]]) shape为[1, 4]
      indicesOut = tensor([[1, 0, 0, 0]]) shape为[1, 4]
    • 示例3:
      若输入
      self = tensor([[1, float('nan'), 3, 2],[-1, float('nan'), 3, 2]]) shape为[2, 4]
      dim = 0
      keepDim = false
      则输出
      valuesOut = tensor([-1., float('nan'),  3.,  2.]) shape为[4]
      indicesOut = tensor([1, 0, 0, 0]) shape为[4]
    • 示例4:
      若输入
      self = tensor([[1, float('nan'), 3, 2],[-1, float('nan'), 3, 2]]) shape为[2, 4]
      dim = 1
      keepDim = false
      则输出
      valuesOut = tensor([2, 2]) shape为[2]
      indicesOut = tensor([3, 3]) shape为[2]

aclnnNanMedianDimGetWorkspaceSize

  • 参数说明:

    • self(aclTensor*,计算输入):Device侧的aclTensor,shape支持0-8维,支持非连续的Tensor数据格式支持ND。
      • Atlas 训练系列产品:数据类型支持FLOAT、FLOAT16、UINT8、INT8、INT16、INT32、INT64。
      • Atlas A2 训练系列产品/Atlas 800I A2 推理产品:数据类型支持FLOAT、FLOAT16、UINT8、INT8、INT16、INT32、INT64、BFLOAT16。
    • dim(int64_t,计算输入):指定的维度,Host侧的整型常量,取值范围为[-self.dim(), self.dim() - 1]。
    • keepDim(bool,计算输入):是否在输出张量中保留输入张量的维度,Host侧的bool常量,若为true,则将对应维度的size置为1,若为false,则删除对应维度。
    • valuesOut(aclTensor*,计算输出):中位数的数值,Device侧的aclTensor,数据类型需要与self一致,shape支持0-8维。若keepDim为true,则shape需要与self的shape在除dim外的size一致,且在dim上的size为1,若keepDim为false,则shape需要与self除dim外的shape一致,支持非连续的Tensor数据格式支持ND。
      • Atlas 训练系列产品:数据类型支持FLOAT、FLOAT16、UINT8、INT8、INT16、INT32、INT64。
      • Atlas A2 训练系列产品/Atlas 800I A2 推理产品:数据类型支持FLOAT、FLOAT16、UINT8、INT8、INT16、INT32、INT64、BFLOAT16。
    • indicesOut(aclTensor*,计算输出):中位数的索引,Device侧的aclTensor,数据类型支持INT64,shape支持0-8维,且shape需要与valuesOut一致,支持非连续的Tensor数据格式支持ND。
    • workspaceSize(uint64_t*,出参):返回需要在Device侧申请的workspace大小。
    • executor(aclOpExecutor**,出参):返回op执行器,包含了算子计算流程。
  • 返回值:

    aclnnStatus:返回状态码,具体参见aclnn返回码

    第一段接口完成入参校验,出现如下场景时报错:
    返回161001(ACLNN_ERR_PARAM_NULLPTR):1. 传入的self、valuesOut或indicesOut是空指针时。
    返回161002(ACLNN_ERR_PARAM_INVALID):1. self、valuesOut或indicesOut的数据类型不在支持的范围之内。
                                          2. self和valuesOut的数据类型不同。
                                          3. dim的取值范围超出[-self.dim(), self.dim() - 1]。
                                          4. self、valuesOut或indicesOut的维度超过8。
                                          5. self对应dim维度的size不能为0。
                                          6. keepDim为true时,valuesOut或indicesOut的维度与self的维度不一致。
                                          7. keepDim为false时,valuesOut或indicesOut的维度不比self的维度少1。
                                          8. keepDim为true时,valuesOut或indicesOut的shape与self的shape在除dim外的size不一致。
                                          9. keepDim为true时,valuesOut或indicesOut的shape在dim上的size不为1。
                                          10. keepDim为false时,valuesOut或indicesOut的shape与self除dim外的shape不一致。

aclnnNanMedianDim

  • 参数说明:

    • workspace(void*,入参):在Device侧申请的workspace内存地址。
    • workspaceSize(uint64_t,入参):在Device侧申请的workspace大小,由第一段接口aclnnNanMedianDimGetWorkspaceSize获取。
    • executor(aclOpExecutor*,入参):op执行器,包含了算子计算流程。
    • stream(aclrtStream, 入参): 指定执行任务的AscendCL Stream流。
  • 返回值:

    aclnnStatus:返回状态码,具体参见aclnn返回码

约束与限制

无。

调用示例

示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例

#include <iostream>
#include <vector>
#include <cmath>
#include "acl/acl.h"
#include "aclnnop/aclnn_median.h"

#define CHECK_RET(cond, return_expr) \
  do {                               \
    if (!(cond)) {                   \
      return_expr;                   \
    }                                \
  } while (0)

#define LOG_PRINT(message, ...)     \
  do {                              \
    printf(message, ##__VA_ARGS__); \
  } while (0)

int64_t GetShapeSize(const std::vector<int64_t>& shape) {
  int64_t shape_size = 1;
  for (auto i : shape) {
    shape_size *= i;
  }
  return shape_size;
}

int Init(int32_t deviceId, aclrtStream* stream) {
  // 固定写法,AscendCL初始化
  auto ret = aclInit(nullptr);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
  ret = aclrtSetDevice(deviceId);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
  ret = aclrtCreateStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
  return 0;
}

template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
                    aclDataType dataType, aclTensor** tensor) {
  auto size = GetShapeSize(shape) * sizeof(T);
  // 调用aclrtMalloc申请device侧内存
  auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);

  // 调用aclrtMemcpy将host侧数据拷贝到Device侧内存上
  ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);

  // 计算连续tensor的strides
  std::vector<int64_t> strides(shape.size(), 1);
  for (int64_t i = shape.size() - 2; i >= 0; i--) {
    strides[i] = shape[i + 1] * strides[i + 1];
  }

  // 调用aclCreateTensor接口创建aclTensor
  *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
                            shape.data(), shape.size(), *deviceAddr);
  return 0;
}

int main() {
  // 1. (固定写法)device/stream初始化, 参考AscendCL对外接口列表
  // 根据自己的实际device填写deviceId
  int32_t deviceId = 0;
  aclrtStream stream;
  auto ret = Init(deviceId, &stream);
  // check根据自己的需要处理
  CHECK_RET(ret == 0, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
  // 2. 构造输入与输出,需要根据API的接口自定义构造
  std::vector<int64_t> selfShape = {4, 2};
  std::vector<int64_t> valuesOutShape = {2};
  std::vector<int64_t> indicesOutShape = {2};
  void* selfDeviceAddr = nullptr;
  void* valuesOutDeviceAddr = nullptr;
  void* indicesOutDeviceAddr = nullptr;
  aclTensor* self = nullptr;
  aclTensor* valuesOut = nullptr;
  aclTensor* indicesOut = nullptr;
  std::vector<float> selfHostData = {0, 1, 2, 3, 4, 5, 6, 7, NAN};
  std::vector<float> valuesOutHostData = {0, 0};
  std::vector<int64_t> indicesOutHostData = {0, 0};
  int64_t dim = 0;
  bool keepDim = false;
  // 创建self aclTensor
  ret = CreateAclTensor(selfHostData, selfShape, &selfDeviceAddr, aclDataType::ACL_FLOAT, &self);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建valuesOut aclTensor
  ret = CreateAclTensor(valuesOutHostData, valuesOutShape, &valuesOutDeviceAddr, aclDataType::ACL_FLOAT, &valuesOut);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建indicesOut aclTensor
  ret = CreateAclTensor(indicesOutHostData, indicesOutShape, &indicesOutDeviceAddr, aclDataType::ACL_INT64, &indicesOut);
  CHECK_RET(ret == ACL_SUCCESS, return ret);

  // 3. 调用CANN算子库API,需要修改为具体的API
  uint64_t workspaceSize = 0;
  aclOpExecutor* executor;
  // 调用aclnnNanMedianDim第一段接口
  ret = aclnnNanMedianDimGetWorkspaceSize(self, dim, keepDim, valuesOut, indicesOut, &workspaceSize, &executor);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnNanMedianDimGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
  // 根据第一段接口计算出的workspaceSize申请device内存
  void* workspaceAddr = nullptr;
  if (workspaceSize > 0) {
    ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret;);
  }
  // 调用aclnnNanMedianDim第二段接口
  ret = aclnnNanMedianDim(workspaceAddr, workspaceSize, executor, stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnNanMedianDim failed. ERROR: %d\n", ret); return ret);
  // 4. (固定写法)同步等待任务执行结束
  ret = aclrtSynchronizeStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
  // 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
  auto size = GetShapeSize(valuesOutShape);
  std::vector<float> resultData(size, 0);
  ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), valuesOutDeviceAddr,
                    size * sizeof(float), ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
  for (int64_t i = 0; i < size; i++) {
    LOG_PRINT("valuesOut[%ld] is: %f\n", i, resultData[i]);
  }

  std::vector<int64_t> indicesData(size, 0);
  ret = aclrtMemcpy(indicesData.data(), indicesData.size() * sizeof(indicesData[0]), indicesOutDeviceAddr,
                    size * sizeof(int64_t), ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
  for (int64_t i = 0; i < size; i++) {
    LOG_PRINT("indicesOut[%ld] is: %ld\n", i, indicesData[i]);
  }

  // 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
  aclDestroyTensor(self);
  aclDestroyTensor(valuesOut);
  aclDestroyTensor(indicesOut);

  // 7. 释放device资源,需要根据具体API的接口定义修改
  aclrtFree(selfDeviceAddr);
  aclrtFree(valuesOutDeviceAddr);
  aclrtFree(indicesOutDeviceAddr);
  if (workspaceSize > 0) {
    aclrtFree(workspaceAddr);
  }
  aclrtDestroyStream(stream);
  aclrtResetDevice(deviceId);
  aclFinalize();
  return 0;
}