下载
中文
注册

aclnnPreluBackward

支持的产品型号

  • Atlas 训练系列产品
  • Atlas A2 训练系列产品/Atlas 800I A2 推理产品

接口原型

每个算子分为两段式接口,必须先调用“aclnnPreluBackwardGetWorkspaceSize”接口获取计算所需workspace大小以及包含了算子计算流程的执行器,再调用“aclnnPreluBackward”接口执行计算。

  • aclnnStatus aclnnPreluBackwardGetWorkspaceSize(const aclTensor* gradOutput, const aclTensor* self, const aclTensor* weight, aclTensor* gradInput, aclTensor* gradWeight, uint64_t* workspaceSize, aclOpExecutor** executor)
  • aclnnStatus aclnnPreluBackward(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)

功能描述

算子功能:激活函数Prelu的反向函数。 gradInput的计算公式如下:

gradInputi,j,...={gradOutputi,j,...,if selfi,j,...>0gradOutputi,j,...weighti,if selfi,j,...<=0gradInput_{i,j,...}= \begin{cases} gradOutput_{i,j,...}, & if\ self_{i,j,...} > 0 \\ gradOutput_{i,j,...} * weight_{i}, & if\ self_{i,j,...} <= 0 \end{cases}

gradWeight的计算公式如下:

gradWeightj=i,...{0,if selfi,j,...>0gradOutputi,j,...selfi,j,...,if selfi,j,...<=0gradWeight_{j}=\sum_{i,...} \begin{cases} 0, & if\ self_{i,j,...} > 0 \\ gradOutput_{i,j,...} * self_{i,j,...}, & if\ self_{i,j,...} <= 0 \end{cases}

aclnnPreluBackwardGetWorkspaceSize

  • 参数说明:

    • gradOutput(aclTensor *,计算输入):反向传播的梯度值。dtype需要与self相同,shape需要与self满足broadcast关系, 且Broadcast后shape与self的shape相等, 支持非连续的Tensor数据格式支持ND。

      • Atlas A2 训练系列产品/Atlas 800I A2 推理产品:数据类型支持FLOAT16、FLOAT32、BFLOAT16。
      • Atlas 训练系列产品:数据类型支持FLOAT16、FLOAT32。
    • self(aclTensor *,计算输入):prelu的正向输入值。支持非连续的Tensor数据格式支持ND。

      • Atlas A2 训练系列产品/Atlas 800I A2 推理产品:数据类型支持FLOAT16、FLOAT32、BFLOAT16。
      • Atlas 训练系列产品:数据类型支持FLOAT16、FLOAT32。
    • weight(aclTensor *,计算输入):prelu的权重。dtype需要与self相同,支持非连续的Tensor数据格式支持ND,当self shape维度大于1维时,weight元素个数为self shape的第2维度,否则weight元素个数为1。

      • Atlas A2 训练系列产品/Atlas 800I A2 推理产品:数据类型支持FLOAT16、FLOAT32、BFLOAT16。
      • Atlas 训练系列产品:数据类型支持FLOAT16、FLOAT32。
    • gradInput(aclTensor *,计算输出):为self的梯度值。dtype需要与self相同,支持非连续的Tensor,shape需要与gradOutput满足broadcast关系数据格式支持ND,需要与self的shape和数据类型相同。

      • Atlas A2 训练系列产品/Atlas 800I A2 推理产品:数据类型支持FLOAT16、FLOAT32、BFLOAT16。
      • Atlas 训练系列产品:数据类型支持FLOAT16、FLOAT32。
    • gradWeight(aclTensor *,计算输出):为weight的梯度值。dtype需要与self相同,支持非连续的Tensor数据格式支持ND,需要与weight的数据类型相同,weight的元素个数为1时,shape需要与weight相同;weight元素个数不为1时,需要为1维Tensor,且元素个数与weight的元素个数相同。

      • Atlas A2 训练系列产品/Atlas 800I A2 推理产品:数据类型支持FLOAT16、FLOAT32、BFLOAT16。
      • Atlas 训练系列产品:数据类型支持FLOAT16、FLOAT32。
    • workspaceSize(uint64_t *,出参):返回需要在Device侧申请的workspace大小。

    • executor(aclOpExecutor **,出参):返回op执行器,包含了算子计算流程。

  • 返回值:

    aclnnStatus:返回状态码,具体参见aclnn返回码

    161001(ACLNN_ERR_PARAM_NULLPTR):1. 传入的gradOutput、self、weight、gradInput、gradWeight是空指针。
    161002(ACLNN_ERR_PARAM_INVALID):1. gradOutput、self、weight、gradInput、gradWeight的数据类型不在支持的范围之内。
                                     2. gradOutput、self、weight、gradInput、gradWeight的数据类型不同。
                                     3. gradOutput、self、weight、gradInput、gradWeight大于8维。
                                     4. weight的元素个数不等于self的通道数或者1。
                                     5. weight的元素个数为1时,gradWeight的shape与weight不相同。
                                     6. gradOutput和self的shape不满足条件(支持broadcast同时broadcastshape等于self, 即单向broadcast)。

aclnnPreluBackward

  • 参数说明:

    • workspace(void*, 入参):在Device侧申请的workspace内存地址。

    • workspaceSize(uint64_t, 入参):在Device侧申请的workspace大小,由第一段接口aclnnPreluBackwardGetWorkspaceSize获取。

    • executor(aclOpExecutor*, 入参):op执行器,包含了算子计算流程。

    • stream(aclrtStream, 入参):指定执行任务的AscendCL Stream流。

  • 返回值:

    aclnnStatus:返回状态码,具体参见aclnn返回码

约束与限制

无。

调用示例

示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例

#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_prelu_backward.h"

#define CHECK_RET(cond, return_expr) \
  do {                               \
    if (!(cond)) {                   \
      return_expr;                   \
    }                                \
  } while (0)

#define LOG_PRINT(message, ...)     \
  do {                              \
    printf(message, ##__VA_ARGS__); \
  } while (0)

int64_t GetShapeSize(const std::vector<int64_t>& shape) {
  int64_t shape_size = 1;
  for (auto i : shape) {
    shape_size *= i;
  }
  return shape_size;
}

int Init(int32_t deviceId, aclrtStream* stream) {
  // 固定写法,AscendCL初始化
  auto ret = aclInit(nullptr);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
  ret = aclrtSetDevice(deviceId);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
  ret = aclrtCreateStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
  return 0;
}

template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
                    aclDataType dataType, aclTensor** tensor) {
  auto size = GetShapeSize(shape) * sizeof(T);
  // 调用aclrtMalloc申请device侧内存
  auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);

  // 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
  ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);

  // 计算连续tensor的strides
  std::vector<int64_t> strides(shape.size(), 1);
  for (int64_t i = shape.size() - 2; i >= 0; i--) {
    strides[i] = shape[i + 1] * strides[i + 1];
  }

  // 调用aclCreateTensor接口创建aclTensor
  *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
                            shape.data(), shape.size(), *deviceAddr);
  return 0;
}

int main() {
  // 1. (固定写法)device/stream初始化, 参考AscendCL对外接口列表
  // 根据自己的实际device填写deviceId
  int32_t deviceId = 0;
  aclrtStream stream;
  auto ret = Init(deviceId, &stream);
  // check根据自己的需要处理
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
  // 2. 构造输入与输出,需要根据API的接口自定义构造
  std::vector<int64_t> selfShape = {4, 2};
  std::vector<int64_t> weightShape = {2};
  std::vector<int64_t> gradOutputShape = {4, 2};
  std::vector<int64_t> gradInputShape = {4, 2};
  std::vector<int64_t> gradWeightShape = {2};

  void* selfDeviceAddr = nullptr;
  void* gradOutputDeviceAddr = nullptr;
  void* weightDeviceAddr = nullptr;
  void* gradInputDeviceAddr = nullptr;
  void* gradWeightDeviceAddr = nullptr;
  aclTensor* self = nullptr;
  aclTensor* weight = nullptr;
  aclTensor* gradOutput = nullptr;
  aclTensor* gradInput = nullptr;
  aclTensor* gradWeight = nullptr;

  std::vector<float> selfHostData = {0, 1, 2, 3, 4, 5, 6, 7};
  std::vector<float> weightHostData = {0.5, 0.5};
  std::vector<float> gradOutputHostData = {1, 1, 1, 1, 1, 1, 1, 1};
  std::vector<float> gradInputHostData = {0, 0, 0, 0, 0, 0, 0, 0};
  std::vector<float> gradWeightHostData = {0, 0};

  // 创建weight aclTensor
  ret = CreateAclTensor(weightHostData, weightShape, &weightDeviceAddr, aclDataType::ACL_FLOAT, &weight);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建self aclTensor
  ret = CreateAclTensor(selfHostData, selfShape, &selfDeviceAddr, aclDataType::ACL_FLOAT, &self);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建gradOutput aclTensor
  ret = CreateAclTensor(gradOutputHostData, gradOutputShape, &gradOutputDeviceAddr, aclDataType::ACL_FLOAT,
  &gradOutput);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建gradInput aclTensor
  ret = CreateAclTensor(gradInputHostData, gradInputShape, &gradInputDeviceAddr, aclDataType::ACL_FLOAT, &gradInput);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建gradWeight aclTensor
  ret = CreateAclTensor(gradWeightHostData, gradWeightShape, &gradWeightDeviceAddr, aclDataType::ACL_FLOAT, &gradWeight);
  CHECK_RET(ret == ACL_SUCCESS, return ret);

  // 3. 调用CANN算子库API,需要修改为具体的API
  uint64_t workspaceSize = 0;
  aclOpExecutor* executor;
  // 调用aclnnPreluBackward第一段接口
  ret = aclnnPreluBackwardGetWorkspaceSize(gradOutput, self, weight, gradInput, gradWeight, &workspaceSize, &executor);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnPreluBackwardGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
  // 根据第一段接口计算出的workspaceSize申请device内存
  void* workspaceAddr = nullptr;
  if (workspaceSize > 0) {
    ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
  }
  // 调用aclnnPreluBackward第二段接口
  ret = aclnnPreluBackward(workspaceAddr, workspaceSize, executor, stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnPreluBackward failed. ERROR: %d\n", ret); return ret);
  // 4. (固定写法)同步等待任务执行结束
  ret = aclrtSynchronizeStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
  // 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
  auto gradInputSize = GetShapeSize(gradInputShape);
  std::vector<float> gradInputResultData(gradInputSize, 0);
  ret = aclrtMemcpy(gradInputResultData.data(), gradInputResultData.size() * sizeof(gradInputResultData[0]), gradInputDeviceAddr, gradInputSize * sizeof(float), ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
  for (int64_t i = 0; i < gradInputSize; i++) {
    LOG_PRINT("gradInput[%ld] is: %f\n", i, gradInputResultData[i]);
  }

  auto gradWeightSize = GetShapeSize(gradWeightShape);
  std::vector<float> gradWeightResultData(gradWeightSize, 0);
  ret = aclrtMemcpy(gradWeightResultData.data(), gradWeightResultData.size() * sizeof(gradWeightResultData[0]), gradWeightDeviceAddr, gradWeightSize * sizeof(float), ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
  for (int64_t i = 0; i < gradWeightSize; i++) {
    LOG_PRINT("gradWeight[%ld] is: %f\n", i, gradWeightResultData[i]);
  }

  // 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
  aclDestroyTensor(gradOutput);
  aclDestroyTensor(self);
  aclDestroyTensor(weight);
  aclDestroyTensor(gradInput);
  aclDestroyTensor(gradWeight);

  // 7. 释放device资源, 需要根据具体API的接口定义修改
  aclrtFree(selfDeviceAddr);
  aclrtFree(gradOutputDeviceAddr);
  aclrtFree(weightDeviceAddr);
  aclrtFree(gradInputDeviceAddr);
  aclrtFree(gradWeightDeviceAddr);
  if (workspaceSize > 0) {
    aclrtFree(workspaceAddr);
  }
  aclrtDestroyStream(stream);
  aclrtResetDevice(deviceId);
  aclFinalize();

  return 0;
}