aclnnQuantMatmulV4
支持的产品型号
Atlas A2 训练系列产品/Atlas 800I A2 推理产品 Atlas 推理系列产品
接口原型
每个算子分为两段式接口,必须先调用“aclnnQuantMatmulV4GetWorkspaceSize”接口获取计算所需workspace大小以及包含了算子计算流程的执行器,再调用“aclnnQuantMatmulV4”接口执行计算。
aclnnStatus aclnnQuantMatmulV4GetWorkspaceSize(const aclTensor *x1, const aclTensor *x2, const aclTensor *scale, const aclTensor *offset, const aclTensor *pertokenScaleOptional, const aclTensor *bias, bool transposeX1, bool transposeX2, const aclTensor *out, uint64_t *workspaceSize, aclOpExecutor **executor)
aclnnStatus aclnnQuantMatmulV4(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)
功能描述
- 算子功能:兼容aclnnQuantMatmulV3接口功能,在其基础上新增pertoken特性。完成量化的矩阵乘计算,最小支持输入维度为2维,最大支持输入维度为6维。相似接口有aclnnMm(仅支持2维Tensor作为输入的矩阵乘)和aclnnBatchMatMul(仅支持三维的矩阵乘,其中第一维是Batch维度)。
- 计算公式:
无pertoken无bias:
bias int32:
bias bfloat16/float32(此场景无offset):
pertoken无bias:
pertoken, bias int32(此场景无offset):
pertoken, bias bfloat16/float16/float32(此场景无offset):
aclnnQuantMatmulV4GetWorkspaceSize
参数说明:
- x1(aclTensor*,计算输入):公式中的输入x1,device侧的aclTensor。数据格式支持ND。支持最后两根轴转置情况下的非连续tensor,其他场景的非连续的Tensor不支持,shape支持2~6维,在transposeX1为false情况下各个维度表示:(batch,m,k),在transposeX1为true情况下各个维度表示:(batch,k,m),batch可不存在。
Atlas 推理系列产品 :数据类型支持INT8。Atlas A2 训练系列产品/Atlas 800I A2 推理产品 :数据类型支持INT8、INT32、INT4。当数据类型为INT32、INT4时,为INT4量化场景,当前仅支持2-6维ND格式,transposeX1为false情况。其中当x1数据类型为INT4时,维度表示:(batch,m,k),要求k为偶数,当x1数据类型为INT32时,每个INT32数据存放8个INT4数据,对应维度表示:(batch,m,k // 8),要求k为8的倍数。
- x2(aclTensor*,计算输入):公式中的输入x2,device侧的aclTensor。数据格式支持ND格式和昇腾亲和数据排布格式。支持最后两根轴转置情况下的非连续tensor,其他场景的非连续的Tensor不支持。
- ND格式下,shape支持2~6维,在transposeX2为false情况下各个维度表示:(batch,k,n),在transposeX2为true情况下各个维度表示:(batch,n,k),batch可不存在,其中k与x1的shape中的k一致。
- 昇腾亲和数据排布格式下,shape支持4~8维。在transposeX2为true情况下各个维度表示:(batch,k1,n1,n0,k0),batch可不存在,其中k0 = 32, n0 = 16, x1 shape中的k和x2 shape中的k1需要满足以下关系:ceilDiv(k,32) = k1。在transposeX2为false情况下各个维度表示:(batch,n1,k1,k0,n0),batch可不存在,其中k0 = 16,n0 = 32,x1 shape中的k和x2 shape中的k1需要满足以下关系:ceilDiv(k,16) = k1。 可使用aclnnCalculateMatmulWeightSizeV2接口以及aclnnTransMatmulWeight接口完成输入Format从ND到昇腾亲和数据排布格式的转换。
Atlas 推理系列产品 :数据类型支持INT8。当输入x2为昇腾亲和数据排布格式时,不支持transposeX2为false的场景。Atlas A2 训练系列产品/Atlas 800I A2 推理产品 :数据类型支持INT8、INT32、INT4。当数据类型为INT32、INT4时,为INT4量化场景,当前仅支持2维ND格式。- 数据类型为INT4时,在transposeX2为true情况下各个维度表示:(n,k),要求k为偶数;在transposeX2为false情况下各个维度表示:(k,n),要求n为偶数。
- 数据类型为INT32时,每个INT32数据存放8个INT4数据,在transposeX2为true情况下各个维度表示:(n,k // 8),要求k为8的倍数;在transposeX2为false情况下各个维度表示:(k,n // 8),要求n为8的倍数。
- 可使用aclnnConvertWeightToINT4Pack接口完成x2从INT32(1个int32在0~3bit位存储1个int4)到INT32(1个int32存储8个int4)或INT4(1个int4表示1个int4)的数据格式转换,具体参见aclnnConvertWeightToINT4Pack接口。
- scale(aclTensor*,计算输入):表示量化参数,公式中的输入scale,device侧的aclTensor。数据格式支持ND,shape是1维(t,),t = 1或n,其中n与x2的n一致。
Atlas 推理系列产品 :数据类型支持UINT64、INT64。Atlas A2 训练系列产品/Atlas 800I A2 推理产品 :数据类型支持UINT64、INT64、FLOAT32、BFLOAT16。- 当原始输入类型不满足约束与限制中的数据类型组合时,需要提前调用TransQuantParamV2算子的aclnn接口来将scale转成INT64、UINT64数据类型。
- offset(aclTensor*,计算输入):公式中的输入offset,device侧的aclTensor。可选量化参数,数据类型支持FLOAT32,数据格式支持ND,shape是1维(t,),t = 1或n,其中n与x2的n一致。
- pertokenScaleOptional(aclTensor*,计算输入):公式中的输入pertokenScaleOptional,device侧的aclTensor。可选的量化参数。
Atlas 推理系列产品 :不支持pertokenScaleOptional。Atlas A2 训练系列产品/Atlas 800I A2 推理产品 :数据类型支持FLOAT32,数据格式支持ND,shape是1维(t,),t = m,其中m与x1的m一致
- bias(aclTensor*,计算输入):公式中的输入bias,device侧的aclTensor。可选参数,数据格式支持ND。shape支持1维(n,)或3维(batch,1,n),n与x2的n一致。当out的shape为2、4、5、6维时,bias的shape只支持1维(n,)。
Atlas 推理系列产品 :数据类型支持INT32。Atlas A2 训练系列产品/Atlas 800I A2 推理产品 :数据类型支持INT32,BFLOAT16,FLOAT16,FLOAT32。当x1和x2为int32、int4时,bias的shape只支持1维(n,)。
- transposeX1(bool,计算输入):表示x1的输入shape是否包含transpose。在transposeX1为false情况下各个维度表示:(batch,m,k),在transposeX1为true情况下各个维度表示:(batch,k,m),batch可不存在。
Atlas A2 训练系列产品/Atlas 800I A2 推理产品 :x1和x2为int32、int4时,transposeX1仅支持false。
- transposeX2(bool,计算输入):表示x2的输入shape是否包含transpose。
- ND格式下,在transposeX2为false情况下各个维度表示:(batch,k,n),在transposeX2为true情况下各个维度表示:(batch,n,k),batch可不存在,其中k与x1的shape中的k一致。
- 昇腾亲和数据排布格式下,在transposeX2为true情况下各个维度表示:(batch,k1,n1,n0,k0),batch可不存在,其中k0 = 32,n0 = 16,x1 shape中的k和x2 shape中的k1需要满足以下关系:ceilDiv(k,32) = k1。在transposeX2为false情况下各个维度表示:(batch,n1,k1,k0,n0),batch可不存在,其中k0 = 16,n0 = 32,x1 shape中的k和x2 shape中的k1需要满足以下关系:ceilDiv(k,16) = k1。
- out(aclTensor*,计算输出):公式中的输出out,device侧的aclTensor。数据格式支持ND。支持非连续的Tensor,shape支持2~6维,(batch,m,n),batch可不存在,支持x1与x2的batch维度broadcast,输出batch与broadcast之后的batch一致,m与x1的m一致,n与x2的n一致。
Atlas 推理系列产品 :数据类型支持FLOAT16、INT8。Atlas A2 训练系列产品/Atlas 800I A2 推理产品 :数据类型支持FLOAT16、INT8、BFLOAT16、INT32。
- workspaceSize(uint64_t*,出参):返回需要在Device侧申请的workspace大小。
- executor(aclOpExecutor**,出参):返回op执行器,包含了算子计算流程。
- x1(aclTensor*,计算输入):公式中的输入x1,device侧的aclTensor。数据格式支持ND。支持最后两根轴转置情况下的非连续tensor,其他场景的非连续的Tensor不支持,shape支持2~6维,在transposeX1为false情况下各个维度表示:(batch,m,k),在transposeX1为true情况下各个维度表示:(batch,k,m),batch可不存在。
返回值:
aclnnStatus:返回状态码,具体参见aclnn返回码。
第一段接口完成入参校验,出现以下场景时报错: - 161001(ACLNN_ERR_PARAM_NULLPTR): 1. 传入的x1、x2、scale或out是空指针。 - 161002(ACLNN_ERR_PARAM_INVALID): 1. x1、x2、bias、scale、offset或out的数据类型和数据格式不在支持的范围之内。 2. x1、x2、bias、scale、offset或out的shape不满足校验条件。 3. x1、x2、bias、scale、offset或out是空tensor。 4. x1与x2的最后一维大小超过65535,x1的最后一维指transposeX1为true时的m或transposeX1为false时的k,x2的最后一维指transposeX2为true时的k或transposeX2为false时的n。
aclnnQuantMatmulV4
参数说明:
- workspace(void*, 入参):在Device侧申请的workspace内存地址。
- workspaceSize(uint64_t, 入参):在Device侧申请的workspace大小,由第一段接口aclnnQuantMatmulV4GetWorkspaceSize获取。
- executor(aclOpExecutor*, 入参):op执行器,包含了算子计算流程。
- stream(aclrtStream, 入参):指定执行任务的AscendCL Stream流。
返回值:
aclnnStatus:返回状态码,具体参见aclnn返回码。
约束与限制
输入和输出支持以下数据类型组合:
Atlas 推理系列产品 :x1 x2 scale offset bias pertoken scale out int8 int8 uint64/int64 null int32 null float16 int8 int8 uint64/int64 float32 int32 null int8 Atlas A2 训练系列产品/Atlas 800I A2 推理产品 :x1 x2 scale offset bias pertoken scale out int8 int8 uint64/int64 null int32 null float16 int8 int8 uint64/int64 float32 int32 null int8 int8 int8 float32/bfloat16 null int32/bfloat16/float32 null/float32 bfloat16 int8 int8 float32 null int32/float16/float32 float32 float16 int4/int32 int4/int32 uint64/int64 null int32 null float16 int8 int8 float32/bfloat16 null int32 null int32
调用示例
Atlas A2 训练系列产品/Atlas 800I A2 推理产品 : 示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例。#include <iostream> #include <memory> #include <vector> #include "acl/acl.h" #include "aclnnop/aclnn_quant_matmul_v4.h" #define CHECK_RET(cond, return_expr) \ do { \ if (!(cond)) { \ return_expr; \ } \ } while (0) #define CHECK_FREE_RET(cond, return_expr) \ do { \ if (!(cond)) { \ Finalize(deviceId, stream); \ return_expr; \ } \ } while (0) #define LOG_PRINT(message, ...) \ do { \ printf(message, ##__VA_ARGS__); \ } while (0) int64_t GetShapeSize(const std::vector<int64_t> &shape) { int64_t shapeSize = 1; for (auto i : shape) { shapeSize *= i; } return shapeSize; } int Init(int32_t deviceId, aclrtStream *stream) { // 固定写法,AscendCL初始化 auto ret = aclInit(nullptr); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret); ret = aclrtSetDevice(deviceId); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret); ret = aclrtCreateStream(stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret); return 0; } template <typename T> int CreateAclTensor(const std::vector<T> &hostData, const std::vector<int64_t> &shape, void **deviceAddr, aclDataType dataType, aclTensor **tensor) { auto size = GetShapeSize(shape) * sizeof(T); // 调用aclrtMalloc申请device侧内存 auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret); // 调用aclrtMemcpy将host侧数据拷贝到device侧内存上 ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret); // 计算连续tensor的strides std::vector<int64_t> strides(shape.size(), 1); for (int64_t i = shape.size() - 2; i >= 0; i--) { strides[i] = shape[i + 1] * strides[i + 1]; } // 调用aclCreateTensor接口创建aclTensor *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND, shape.data(), shape.size(), *deviceAddr); return 0; } void Finalize(int32_t deviceId, aclrtStream stream) { aclrtDestroyStream(stream); aclrtResetDevice(deviceId); aclFinalize(); } int aclnnQuantMatmulV4Test(int32_t deviceId, aclrtStream &stream) { auto ret = Init(deviceId, &stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret); // 2. 构造输入与输出,需要根据API的接口自定义构造 std::vector<int64_t> x1Shape = {5, 2}; std::vector<int64_t> x2Shape = {2, 3}; std::vector<int64_t> biasShape = {3}; std::vector<int64_t> offsetShape = {3}; std::vector<int64_t> pertokenScaleShape = {5}; std::vector<int64_t> scaleShape = {3}; std::vector<int64_t> outShape = {5, 3}; void *x1DeviceAddr = nullptr; void *x2DeviceAddr = nullptr; void *scaleDeviceAddr = nullptr; void *offsetDeviceAddr = nullptr; void *pertokenScaleDeviceAddr = nullptr; void *biasDeviceAddr = nullptr; void *outDeviceAddr = nullptr; aclTensor *x1 = nullptr; aclTensor *x2 = nullptr; aclTensor *bias = nullptr; aclTensor *scale = nullptr; aclTensor *offset = nullptr; aclTensor *pertokenScale = nullptr; aclTensor *out = nullptr; std::vector<int8_t> x1HostData = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}; std::vector<int8_t> x2HostData = {1, 1, 1, 1, 1, 1}; std::vector<int32_t> biasHostData = {1, 1, 1}; std::vector<float> scaleHostData = {1, 1, 1}; std::vector<float> offsetHostData = {1, 1, 1}; std::vector<float> pertokenScaleHostData = {1, 1, 1, 1, 1}; std::vector<uint16_t> outHostData = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}; // 实际上是float16半精度方式 // 创建x1 aclTensor ret = CreateAclTensor(x1HostData, x1Shape, &x1DeviceAddr, aclDataType::ACL_INT8, &x1); std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> x1TensorPtr(x1, aclDestroyTensor); std::unique_ptr<void, aclError (*)(void *)> x1DeviceAddrPtr(x1DeviceAddr, aclrtFree); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建x2 aclTensor ret = CreateAclTensor(x2HostData, x2Shape, &x2DeviceAddr, aclDataType::ACL_INT8, &x2); std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> x2TensorPtr(x2, aclDestroyTensor); std::unique_ptr<void, aclError (*)(void *)> x2DeviceAddrPtr(x2DeviceAddr, aclrtFree); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建scale aclTensor ret = CreateAclTensor(scaleHostData, scaleShape, &scaleDeviceAddr, aclDataType::ACL_FLOAT, &scale); std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> scaleTensorPtr(scale, aclDestroyTensor); std::unique_ptr<void, aclError (*)(void *)> scaleDeviceAddrPtr(scaleDeviceAddr, aclrtFree); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建offset aclTensor ret = CreateAclTensor(offsetHostData, offsetShape, &offsetDeviceAddr, aclDataType::ACL_FLOAT, &offset); std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> offsetTensorPtr(offset, aclDestroyTensor); std::unique_ptr<void, aclError (*)(void *)> offsetDeviceAddrPtr(offsetDeviceAddr, aclrtFree); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建pertokenScale aclTensor ret = CreateAclTensor(pertokenScaleHostData, pertokenScaleShape, &pertokenScaleDeviceAddr, aclDataType::ACL_FLOAT, &pertokenScale); std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> pertokenScaleTensorPtr(pertokenScale, aclDestroyTensor); std::unique_ptr<void, aclError (*)(void *)> pertokenScaleDeviceAddrPtr(pertokenScaleDeviceAddr, aclrtFree); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建bias aclTensor ret = CreateAclTensor(biasHostData, biasShape, &biasDeviceAddr, aclDataType::ACL_INT32, &bias); std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> biasTensorPtr(bias, aclDestroyTensor); std::unique_ptr<void, aclError (*)(void *)> biasDeviceAddrPtr(biasDeviceAddr, aclrtFree); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建out aclTensor ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT16, &out); std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> outTensorPtr(out, aclDestroyTensor); std::unique_ptr<void, aclError (*)(void *)> outDeviceAddrPtr(outDeviceAddr, aclrtFree); CHECK_RET(ret == ACL_SUCCESS, return ret); bool transposeX1 = false; bool transposeX2 = false; // 3. 调用CANN算子库API,需要修改为具体的Api名称 uint64_t workspaceSize = 0; aclOpExecutor *executor; // 调用aclnnQuantMatmulV4第一段接口 ret = aclnnQuantMatmulV4GetWorkspaceSize(x1, x2, scale, nullptr, pertokenScale, bias, transposeX1, transposeX2, out, &workspaceSize, &executor); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnQuantMatmulV4GetWorkspaceSize failed. ERROR: %d\n", ret); return ret); // 根据第一段接口计算出的workspaceSize申请device内存 void *workspaceAddr = nullptr; std::unique_ptr<void, aclError (*)(void *)> workspaceAddrPtr(nullptr, aclrtFree); if (workspaceSize > 0) { ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret); workspaceAddrPtr.reset(workspaceAddr); } // 调用aclnnQuantMatmulV4第二段接口 ret = aclnnQuantMatmulV4(workspaceAddr, workspaceSize, executor, stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnQuantMatmulV4 failed. ERROR: %d\n", ret); return ret); // 4. (固定写法)同步等待任务执行结束 ret = aclrtSynchronizeStream(stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret); // 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改 auto size = GetShapeSize(outShape); std::vector<uint16_t> resultData( size, 0); // C语言中无法直接打印fp16的数据,需要用uint16读出来,自行通过二进制转成fp16 ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), outDeviceAddr, size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret); for (int64_t i = 0; i < size; i++) { LOG_PRINT("result[%ld] is: %u\n", i, resultData[i]); } return ACL_SUCCESS; } int main() { // 1. (固定写法)device/stream初始化,参考AscendCL对外接口列表 // 根据自己的实际device填写deviceId int32_t deviceId = 0; aclrtStream stream; auto ret = aclnnQuantMatmulV4Test(deviceId, stream); CHECK_FREE_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnQuantMatmulV4Test failed. ERROR: %d\n", ret); return ret); Finalize(deviceId, stream); return 0; }
Atlas A2 训练系列产品/Atlas 800I A2 推理产品 :AI处理器x2为昇腾亲和数据排布格式场景下的示例代码如下(transposeX2=false),仅供参考,具体编译和执行过程请参考编译与运行样例。#include <iostream> #include <memory> #include <vector> #include "acl/acl.h" #include "aclnnop/aclnn_permute.h" #include "aclnnop/aclnn_quant_matmul_v4.h" #include "aclnnop/aclnn_trans_matmul_weight.h" #include "aclnnop/aclnn_trans_quant_param_v2.h" #define CHECK_RET(cond, return_expr) \ do { \ if (!(cond)) { \ return_expr; \ } \ } while (0) #define CHECK_FREE_RET(cond, return_expr) \ do { \ if (!(cond)) { \ Finalize(deviceId, stream); \ return_expr; \ } \ } while (0) #define LOG_PRINT(message, ...) \ do { \ printf(message, ##__VA_ARGS__); \ } while (0) int64_t GetShapeSize(const std::vector<int64_t> &shape) { int64_t shapeSize = 1; for (auto i : shape) { shapeSize *= i; } return shapeSize; } int Init(int32_t deviceId, aclrtStream *stream) { // 固定写法,AscendCL初始化 auto ret = aclInit(nullptr); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret); ret = aclrtSetDevice(deviceId); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret); ret = aclrtCreateStream(stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret); return 0; } template <typename T> int CreateAclTensor(const std::vector<T> &hostData, const std::vector<int64_t> &shape, void **deviceAddr, aclDataType dataType, aclTensor **tensor) { auto size = GetShapeSize(shape) * sizeof(T); // 调用aclrtMalloc申请device侧内存 auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret); // 调用aclrtMemcpy将host侧数据拷贝到device侧内存上 ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret); // 计算连续tensor的strides std::vector<int64_t> strides(shape.size(), 1); for (int64_t i = shape.size() - 2; i >= 0; i--) { strides[i] = shape[i + 1] * strides[i + 1]; } // 调用aclCreateTensor接口创建aclTensor *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND, shape.data(), shape.size(), *deviceAddr); return 0; } void Finalize(int32_t deviceId, aclrtStream stream) { aclrtDestroyStream(stream); aclrtResetDevice(deviceId); aclFinalize(); } template <typename T> int CreateAclTensorX2(const std::vector<T> &hostData, const std::vector<int64_t> &shape, void **deviceAddr, aclDataType dataType, aclTensor **tensor) { auto size = static_cast<uint64_t>(GetShapeSize(shape)); const aclIntArray *mat2Size = aclCreateIntArray(shape.data(), shape.size()); auto ret = aclnnCalculateMatmulWeightSizeV2(mat2Size, dataType, &size); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnCalculateMatmulWeightSizeV2 failed. ERROR: %d\n", ret); return ret); size *= sizeof(T); // 调用aclrtMalloc申请device侧内存 ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret); // 调用aclrtMemcpy将host侧数据拷贝到device侧内存上 ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret); // 计算连续tensor的strides std::vector<int64_t> strides(shape.size(), 1); for (int64_t i = shape.size() - 2; i >= 0; i--) { strides[i] = shape[i + 1] * strides[i + 1]; } std::vector<int64_t> storageShape; storageShape.push_back(GetShapeSize(shape)); // 调用aclCreateTensor接口创建aclTensor *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND, storageShape.data(), storageShape.size(), *deviceAddr); return 0; } int aclnnQuantMatmulV4Test(int32_t deviceId, aclrtStream &stream) { auto ret = Init(deviceId, &stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret); // 2. 构造输入与输出,需要根据API的接口自定义构造 std::vector<int64_t> x1Shape = {5, 2}; std::vector<int64_t> x2Shape = {2, 3}; std::vector<int64_t> biasShape = {3}; std::vector<int64_t> offsetShape = {3}; std::vector<int64_t> pertokenScaleShape = {5}; std::vector<int64_t> scaleShape = {3}; std::vector<int64_t> outShape = {5, 3}; void *x1DeviceAddr = nullptr; void *x2DeviceAddr = nullptr; void *scaleDeviceAddr = nullptr; void *quantParamDeviceAddr = nullptr; void *offsetDeviceAddr = nullptr; void *pertokenScaleDeviceAddr = nullptr; void *biasDeviceAddr = nullptr; void *outDeviceAddr = nullptr; aclTensor *x1 = nullptr; aclTensor *x2 = nullptr; aclTensor *bias = nullptr; aclTensor *scale = nullptr; aclTensor *quantParam = nullptr; aclTensor *offset = nullptr; aclTensor *pertokenScale = nullptr; aclTensor *out = nullptr; std::vector<int8_t> x1HostData = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}; std::vector<int8_t> x2HostData = {1, 1, 1, 1, 1, 1}; std::vector<int32_t> biasHostData = {1, 1, 1}; std::vector<float> scaleHostData = {1, 1, 1}; std::vector<float> offsetHostData = {1, 1, 1}; std::vector<float> pertokenScaleHostData = {1, 1, 1, 1, 1}; std::vector<uint16_t> outHostData = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}; // 实际上是float16半精度方式 // 创建x1 aclTensor ret = CreateAclTensor(x1HostData, x1Shape, &x1DeviceAddr, aclDataType::ACL_INT8, &x1); std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> x1TensorPtr(x1, aclDestroyTensor); std::unique_ptr<void, aclError (*)(void *)> x1DeviceAddrPtr(x1DeviceAddr, aclrtFree); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建昇腾亲和数据排布格式的x2 aclTensor ret = CreateAclTensorX2(x2HostData, x2Shape, &x2DeviceAddr, aclDataType::ACL_INT8, &x2); std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> x2HPTensorPtr(x2, aclDestroyTensor); std::unique_ptr<void, aclError (*)(void *)> x2HPDeviceAddrPtr(x2DeviceAddr, aclrtFree); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建scale aclTensor ret = CreateAclTensor(scaleHostData, scaleShape, &scaleDeviceAddr, aclDataType::ACL_FLOAT, &scale); std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> scaleTensorPtr(scale, aclDestroyTensor); std::unique_ptr<void, aclError (*)(void *)> scaleDeviceAddrPtr(scaleDeviceAddr, aclrtFree); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建quantParam aclTensor ret = CreateAclTensor(scaleHostData, scaleShape, &quantParamDeviceAddr, aclDataType::ACL_UINT64, &quantParam); std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> quantParamTensorPtr(quantParam, aclDestroyTensor); std::unique_ptr<void, aclError (*)(void *)> quantParamDeviceAddrPtr(quantParamDeviceAddr, aclrtFree); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建offset aclTensor ret = CreateAclTensor(offsetHostData, offsetShape, &offsetDeviceAddr, aclDataType::ACL_FLOAT, &offset); std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> offsetTensorPtr(offset, aclDestroyTensor); std::unique_ptr<void, aclError (*)(void *)> offsetDeviceAddrPtr(offsetDeviceAddr, aclrtFree); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建pertokenScale aclTensor ret = CreateAclTensor(pertokenScaleHostData, pertokenScaleShape, &pertokenScaleDeviceAddr, aclDataType::ACL_FLOAT, &pertokenScale); std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> pertokenScaleTensorPtr(pertokenScale, aclDestroyTensor); std::unique_ptr<void, aclError (*)(void *)> pertokenScaleDeviceAddrPtr(pertokenScaleDeviceAddr, aclrtFree); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建bias aclTensor ret = CreateAclTensor(biasHostData, biasShape, &biasDeviceAddr, aclDataType::ACL_INT32, &bias); std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> biasTensorPtr(bias, aclDestroyTensor); std::unique_ptr<void, aclError (*)(void *)> biasDeviceAddrPtr(biasDeviceAddr, aclrtFree); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建out aclTensor ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT16, &out); std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> outTensorPtr(out, aclDestroyTensor); std::unique_ptr<void, aclError (*)(void *)> outDeviceAddrPtr(outDeviceAddr, aclrtFree); CHECK_RET(ret == ACL_SUCCESS, return ret); bool transposeX1 = false; bool transposeX2 = false; // 3. 调用CANN算子库API,需要修改为具体的Api名称 uint64_t workspaceSize = 0; aclOpExecutor *executor; void *workspaceAddr = nullptr; // 调用aclnnTransMatmulWeight第一段接口 ret = aclnnTransMatmulWeightGetWorkspaceSize(x2, &workspaceSize, &executor); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnTransMatmulWeightGetWorkspaceSize failed. ERROR: %d\n", ret); return ret); // 根据第一段接口计算出的workspaceSize申请device内存 std::unique_ptr<void, aclError (*)(void *)> workspaceAddrPtrTrans(nullptr, aclrtFree); if (workspaceSize > 0) { ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret); workspaceAddrPtrTrans.reset(workspaceAddr); } // 调用aclnnTransMatmulWeight第二段接口 ret = aclnnTransMatmulWeight(workspaceAddr, workspaceSize, executor, stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnTransMatmulWeight failed. ERROR: %d\n", ret); return ret); // FLOAT数据类型的scale需要提前调用TransQuantParamV2算子的aclnn接口 // 调用aclnnaclnnTransQuantParamV2第一段接口 ret = aclnnTransQuantParamV2GetWorkspaceSize(scale, offset, quantParam, &workspaceSize, &executor); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnTransQuantParamV2GetWorkspaceSize failed. ERROR: %d\n", ret); return ret); // 根据第一段接口计算出的workspaceSize申请device内存 workspaceAddr = nullptr; std::unique_ptr<void, aclError (*)(void *)> workspaceAddrPtrV2(nullptr, aclrtFree); if (workspaceSize > 0) { ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret); workspaceAddrPtrV2.reset(workspaceAddr); } // 调用aclnnTransQuantParamV2第二段接口 ret = aclnnTransQuantParamV2(workspaceAddr, workspaceSize, executor, stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnTransQuantParamV2 failed. ERROR: %d\n", ret); return ret); // 调用aclnnQuantMatmulV4第一段接口, <term>Atlas 推理系列产品</term>暂时不支持pertoken workspaceSize = 0; ret = aclnnQuantMatmulV4GetWorkspaceSize(x1, x2, quantParam, nullptr, nullptr, bias, transposeX1, transposeX2, out, &workspaceSize, &executor); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnQuantMatmulV4GetWorkspaceSize failed. ERROR: %d\n", ret); return ret); // 根据第一段接口计算出的workspaceSize申请device内存 std::unique_ptr<void, aclError (*)(void *)> workspaceAddrPtrV4(nullptr, aclrtFree); if (workspaceSize > 0) { ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret); workspaceAddrPtrV4.reset(workspaceAddr); } // 调用aclnnQuantMatmulV4第二段接口 ret = aclnnQuantMatmulV4(workspaceAddr, workspaceSize, executor, stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnQuantMatmulV4 failed. ERROR: %d\n", ret); return ret); // 4. (固定写法)同步等待任务执行结束 ret = aclrtSynchronizeStream(stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret); // 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改 auto size = GetShapeSize(outShape); std::vector<uint16_t> resultData( size, 0); // C语言中无法直接打印fp16的数据,需要用uint16读出来,自行通过二进制转成fp16 ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), outDeviceAddr, size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret); for (int64_t i = 0; i < size; i++) { LOG_PRINT("result[%ld] is: %u\n", i, resultData[i]); } return ACL_SUCCESS; } int main() { // 1. (固定写法)device/stream初始化,参考AscendCL对外接口列表 // 根据自己的实际device填写deviceId int32_t deviceId = 0; aclrtStream stream; auto ret = aclnnQuantMatmulV4Test(deviceId, stream); CHECK_FREE_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnQuantMatmulV4Test failed. ERROR: %d\n", ret); return ret); Finalize(deviceId, stream); return 0; }
Atlas 推理系列产品 :x2为昇腾亲和数据排布格式场景下的示例代码如下(transposeX2=true),仅供参考,具体编译和执行过程请参考编译与运行样例。#include <iostream> #include <memory> #include <vector> #include "acl/acl.h" #include "aclnnop/aclnn_permute.h" #include "aclnnop/aclnn_quant_matmul_v4.h" #include "aclnnop/aclnn_trans_matmul_weight.h" #include "aclnnop/aclnn_trans_quant_param_v2.h" #define CHECK_RET(cond, return_expr) \ do { \ if (!(cond)) { \ return_expr; \ } \ } while (0) #define CHECK_FREE_RET(cond, return_expr) \ do { \ if (!(cond)) { \ Finalize(deviceId, stream); \ return_expr; \ } \ } while (0) #define LOG_PRINT(message, ...) \ do { \ printf(message, ##__VA_ARGS__); \ } while (0) int64_t GetShapeSize(const std::vector<int64_t> &shape) { int64_t shapeSize = 1; for (auto i : shape) { shapeSize *= i; } return shapeSize; } int Init(int32_t deviceId, aclrtStream *stream) { // 固定写法,AscendCL初始化 auto ret = aclInit(nullptr); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret); ret = aclrtSetDevice(deviceId); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret); ret = aclrtCreateStream(stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret); return 0; } template <typename T> int CreateAclTensor(const std::vector<T> &hostData, const std::vector<int64_t> &shape, void **deviceAddr, aclDataType dataType, aclTensor **tensor) { auto size = GetShapeSize(shape) * sizeof(T); // 调用aclrtMalloc申请device侧内存 auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret); // 调用aclrtMemcpy将host侧数据拷贝到device侧内存上 ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret); // 计算连续tensor的strides std::vector<int64_t> strides(shape.size(), 1); for (int64_t i = shape.size() - 2; i >= 0; i--) { strides[i] = shape[i + 1] * strides[i + 1]; } // 调用aclCreateTensor接口创建aclTensor *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND, shape.data(), shape.size(), *deviceAddr); return 0; } void Finalize(int32_t deviceId, aclrtStream stream) { aclrtDestroyStream(stream); aclrtResetDevice(deviceId); aclFinalize(); } template <typename T> int CreateAclTensorX2(const std::vector<T> &hostData, const std::vector<int64_t> &shape, void **deviceAddr, aclDataType dataType, aclTensor **tensor) { auto size = static_cast<uint64_t>(GetShapeSize(shape)); const aclIntArray *mat2Size = aclCreateIntArray(shape.data(), shape.size()); auto ret = aclnnCalculateMatmulWeightSizeV2(mat2Size, dataType, &size); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnCalculateMatmulWeightSizeV2 failed. ERROR: %d\n", ret); return ret); size *= sizeof(T); // 调用aclrtMalloc申请device侧内存 ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret); // 调用aclrtMemcpy将host侧数据拷贝到device侧内存上 ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret); // 计算连续tensor的strides std::vector<int64_t> strides(shape.size(), 1); for (int64_t i = shape.size() - 2; i >= 0; i--) { strides[i] = shape[i + 1] * strides[i + 1]; } std::vector<int64_t> storageShape; storageShape.push_back(GetShapeSize(shape)); // 调用aclCreateTensor接口创建aclTensor *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND, storageShape.data(), storageShape.size(), *deviceAddr); return 0; } int aclnnQuantMatmulV4Test(int32_t deviceId, aclrtStream &stream) { auto ret = Init(deviceId, &stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret); // 2. 构造输入与输出,需要根据API的接口自定义构造 std::vector<int64_t> x1Shape = {5, 2}; std::vector<int64_t> x2Shape = {2, 3}; std::vector<int64_t> x2TransposedShape = {3, 2}; std::vector<int64_t> biasShape = {3}; std::vector<int64_t> offsetShape = {3}; std::vector<int64_t> pertokenScaleShape = {5}; std::vector<int64_t> scaleShape = {3}; std::vector<int64_t> outShape = {5, 3}; void *x1DeviceAddr = nullptr; void *x2DeviceAddr = nullptr; void *x2TransposedDeviceAddr = nullptr; void *scaleDeviceAddr = nullptr; void *quantParamDeviceAddr = nullptr; void *offsetDeviceAddr = nullptr; void *pertokenScaleDeviceAddr = nullptr; void *biasDeviceAddr = nullptr; void *outDeviceAddr = nullptr; aclTensor *x1 = nullptr; aclTensor *x2 = nullptr; aclTensor *x2Transposed = nullptr; aclTensor *bias = nullptr; aclTensor *scale = nullptr; aclTensor *quantParam = nullptr; aclTensor *offset = nullptr; aclTensor *pertokenScale = nullptr; aclTensor *out = nullptr; std::vector<int8_t> x1HostData = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}; std::vector<int8_t> x2HostData = {1, 1, 1, 1, 1, 1}; std::vector<int8_t> x2TransposedHostData = {1, 1, 1, 1, 1, 1}; std::vector<int32_t> biasHostData = {1, 1, 1}; std::vector<float> scaleHostData = {1, 1, 1}; std::vector<float> offsetHostData = {1, 1, 1}; std::vector<float> pertokenScaleHostData = {1, 1, 1, 1, 1}; std::vector<uint16_t> outHostData = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}; // 实际上是float16半精度方式 // 创建x1 aclTensor ret = CreateAclTensor(x1HostData, x1Shape, &x1DeviceAddr, aclDataType::ACL_INT8, &x1); std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> x1TensorPtr(x1, aclDestroyTensor); std::unique_ptr<void, aclError (*)(void *)> x1DeviceAddrPtr(x1DeviceAddr, aclrtFree); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建昇腾亲和数据排布格式的x2 aclTensor ret = CreateAclTensorX2(x2HostData, x2Shape, &x2DeviceAddr, aclDataType::ACL_INT8, &x2); std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> x2HPTensorPtr(x2, aclDestroyTensor); std::unique_ptr<void, aclError (*)(void *)> x2HPDeviceAddrPtr(x2DeviceAddr, aclrtFree); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建昇腾亲和数据排布格式的x2Transposed aclTensor ret = CreateAclTensorX2(x2TransposedHostData, x2TransposedShape, &x2TransposedDeviceAddr, aclDataType::ACL_INT8, &x2Transposed); std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> x2TransposedHPTensorPtr(x2Transposed, aclDestroyTensor); std::unique_ptr<void, aclError (*)(void *)> x2TransposedHPDeviceAddrPtr(x2TransposedDeviceAddr, aclrtFree); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建scale aclTensor ret = CreateAclTensor(scaleHostData, scaleShape, &scaleDeviceAddr, aclDataType::ACL_FLOAT, &scale); std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> scaleTensorPtr(scale, aclDestroyTensor); std::unique_ptr<void, aclError (*)(void *)> scaleDeviceAddrPtr(scaleDeviceAddr, aclrtFree); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建quantParam aclTensor ret = CreateAclTensor(scaleHostData, scaleShape, &quantParamDeviceAddr, aclDataType::ACL_UINT64, &quantParam); std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> quantParamTensorPtr(quantParam, aclDestroyTensor); std::unique_ptr<void, aclError (*)(void *)> quantParamDeviceAddrPtr(quantParamDeviceAddr, aclrtFree); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建offset aclTensor ret = CreateAclTensor(offsetHostData, offsetShape, &offsetDeviceAddr, aclDataType::ACL_FLOAT, &offset); std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> offsetTensorPtr(offset, aclDestroyTensor); std::unique_ptr<void, aclError (*)(void *)> offsetDeviceAddrPtr(offsetDeviceAddr, aclrtFree); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建pertokenScale aclTensor ret = CreateAclTensor(pertokenScaleHostData, pertokenScaleShape, &pertokenScaleDeviceAddr, aclDataType::ACL_FLOAT, &pertokenScale); std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> pertokenScaleTensorPtr(pertokenScale, aclDestroyTensor); std::unique_ptr<void, aclError (*)(void *)> pertokenScaleDeviceAddrPtr(pertokenScaleDeviceAddr, aclrtFree); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建bias aclTensor ret = CreateAclTensor(biasHostData, biasShape, &biasDeviceAddr, aclDataType::ACL_INT32, &bias); std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> biasTensorPtr(bias, aclDestroyTensor); std::unique_ptr<void, aclError (*)(void *)> biasDeviceAddrPtr(biasDeviceAddr, aclrtFree); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建out aclTensor ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT16, &out); std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> outTensorPtr(out, aclDestroyTensor); std::unique_ptr<void, aclError (*)(void *)> outDeviceAddrPtr(outDeviceAddr, aclrtFree); CHECK_RET(ret == ACL_SUCCESS, return ret); bool transposeX1 = false; bool transposeX2 = true; // 3. 调用CANN算子库API,需要修改为具体的Api名称 uint64_t workspaceSize = 0; aclOpExecutor *executor; void *workspaceAddr = nullptr; // x2的shape需要transpose成nk格式,再进行transdata std::vector<int64_t> dimsData = {1, 0}; // 创建dims aclIntArray aclIntArray *dims = aclCreateIntArray(dimsData.data(), dimsData.size()); // 调用aclnnPermute第一段接口 ret = aclnnPermuteGetWorkspaceSize(x2, dims, x2Transposed, &workspaceSize, &executor); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnPermuteGetWorkspaceSize failed. ERROR: %d\n", ret); return ret); // 根据第一段接口计算出的workspaceSize申请device内存 std::unique_ptr<void, aclError (*)(void *)> workspaceAddrPtrPermute(nullptr, aclrtFree); if (workspaceSize > 0) { ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret); workspaceAddrPtrPermute.reset(workspaceAddr); } // 调用aclnnPermute第二段接口 ret = aclnnPermute(workspaceAddr, workspaceSize, executor, stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnPermuteGetWorkspaceSize failed. ERROR: %d\n", ret); return ret); workspaceSize = 0; // 调用aclnnTransMatmulWeight第一段接口 ret = aclnnTransMatmulWeightGetWorkspaceSize(x2Transposed, &workspaceSize, &executor); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnTransMatmulWeightGetWorkspaceSize failed. ERROR: %d\n", ret); return ret); // 根据第一段接口计算出的workspaceSize申请device内存 std::unique_ptr<void, aclError (*)(void *)> workspaceAddrPtrTrans(nullptr, aclrtFree); if (workspaceSize > 0) { ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret); workspaceAddrPtrTrans.reset(workspaceAddr); } // 调用aclnnTransMatmulWeight第二段接口 ret = aclnnTransMatmulWeight(workspaceAddr, workspaceSize, executor, stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnTransMatmulWeight failed. ERROR: %d\n", ret); return ret); // FLOAT数据类型的scale需要提前调用TransQuantParamV2算子的aclnn接口 // 调用aclnnaclnnTransQuantParamV2第一段接口 ret = aclnnTransQuantParamV2GetWorkspaceSize(scale, offset, quantParam, &workspaceSize, &executor); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnTransQuantParamV2GetWorkspaceSize failed. ERROR: %d\n", ret); return ret); // 根据第一段接口计算出的workspaceSize申请device内存 workspaceAddr = nullptr; std::unique_ptr<void, aclError (*)(void *)> workspaceAddrPtrV2(nullptr, aclrtFree); if (workspaceSize > 0) { ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret); workspaceAddrPtrV2.reset(workspaceAddr); } // 调用aclnnTransQuantParamV2第二段接口 ret = aclnnTransQuantParamV2(workspaceAddr, workspaceSize, executor, stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnTransQuantParamV2 failed. ERROR: %d\n", ret); return ret); // 调用aclnnQuantMatmulV4第一段接口, <term>Atlas 推理系列产品</term>暂时不支持pertoken workspaceSize = 0; ret = aclnnQuantMatmulV4GetWorkspaceSize(x1, x2Transposed, quantParam, nullptr, nullptr, bias, transposeX1, transposeX2, out, &workspaceSize, &executor); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnQuantMatmulV4GetWorkspaceSize failed. ERROR: %d\n", ret); return ret); // 根据第一段接口计算出的workspaceSize申请device内存 std::unique_ptr<void, aclError (*)(void *)> workspaceAddrPtrV4(nullptr, aclrtFree); if (workspaceSize > 0) { ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret); workspaceAddrPtrV4.reset(workspaceAddr); } // 调用aclnnQuantMatmulV4第二段接口 ret = aclnnQuantMatmulV4(workspaceAddr, workspaceSize, executor, stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnQuantMatmulV4 failed. ERROR: %d\n", ret); return ret); // 4. (固定写法)同步等待任务执行结束 ret = aclrtSynchronizeStream(stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret); // 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改 auto size = GetShapeSize(outShape); std::vector<uint16_t> resultData( size, 0); // C语言中无法直接打印fp16的数据,需要用uint16读出来,自行通过二进制转成fp16 ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), outDeviceAddr, size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret); for (int64_t i = 0; i < size; i++) { LOG_PRINT("result[%ld] is: %u\n", i, resultData[i]); } return ACL_SUCCESS; } int main() { // 1. (固定写法)device/stream初始化,参考AscendCL对外接口列表 // 根据自己的实际device填写deviceId int32_t deviceId = 0; aclrtStream stream; auto ret = aclnnQuantMatmulV4Test(deviceId, stream); CHECK_FREE_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnQuantMatmulV4Test failed. ERROR: %d\n", ret); return ret); Finalize(deviceId, stream); return 0; }
Atlas A2 训练系列产品/Atlas 800I A2 推理产品 :INT4量化场景示例代码如下(x1和x2数据类型为int4,transposeX2=false),仅供参考,具体编译和执行过程请参考编译与运行样例。#include <iostream> #include <memory> #include <vector> #include "acl/acl.h" #include "aclnnop/aclnn_convert_weight_to_int4_pack.h" #include "aclnnop/aclnn_quant_matmul_v4.h" #include "aclnnop/aclnn_trans_quant_param_v2.h" #define CHECK_RET(cond, return_expr) \ do { \ if (!(cond)) { \ return_expr; \ } \ } while (0) #define CHECK_FREE_RET(cond, return_expr) \ do { \ if (!(cond)) { \ Finalize(deviceId, stream); \ return_expr; \ } \ } while (0) #define LOG_PRINT(message, ...) \ do { \ printf(message, ##__VA_ARGS__); \ } while (0) int64_t GetShapeSize(const std::vector<int64_t> &shape) { int64_t shapeSize = 1; for (auto i : shape) { shapeSize *= i; } return shapeSize; } int Init(int32_t deviceId, aclrtStream *stream) { // 固定写法,AscendCL初始化 auto ret = aclInit(nullptr); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret); ret = aclrtSetDevice(deviceId); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret); ret = aclrtCreateStream(stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret); return 0; } template <typename T> int CreateAclTensor(const std::vector<T> &hostData, const std::vector<int64_t> &shape, void **deviceAddr, aclDataType dataType, aclTensor **tensor) { // 通过hostData获取申请和拷贝的内存byte数 auto size = hostData.size() * sizeof(T); // 调用aclrtMalloc申请device侧内存 auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret); // 调用aclrtMemcpy将host侧数据拷贝到device侧内存上 ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret); // 计算连续tensor的strides std::vector<int64_t> strides(shape.size(), 1); for (int64_t i = shape.size() - 2; i >= 0; i--) { strides[i] = shape[i + 1] * strides[i + 1]; } // 调用aclCreateTensor接口创建aclTensor *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND, shape.data(), shape.size(), *deviceAddr); return 0; } void Finalize(int32_t deviceId, aclrtStream stream) { aclrtDestroyStream(stream); aclrtResetDevice(deviceId); aclFinalize(); } int aclnnQuantMatmulV4Test(int32_t deviceId, aclrtStream &stream) { auto ret = Init(deviceId, &stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret); // 2. 构造输入与输出,需要根据API的接口自定义构造 int64_t m = 16; int64_t k = 8; int64_t n = 32; aclDataType x1Dtype = aclDataType::ACL_INT4; aclDataType x2Int4PackDtype = aclDataType::ACL_INT4; std::vector<int64_t> x1Shape = {m, k}; std::vector<int64_t> x2Shape = {k, n}; std::vector<int64_t> x2Int4PackShape = {k, n}; std::vector<int64_t> biasShape = {n}; std::vector<int64_t> scaleShape = {n}; std::vector<int64_t> outShape = {m, n}; void *x1DeviceAddr = nullptr; void *x2DeviceAddr = nullptr; void *x2Int4PackDeviceAddr = nullptr; void *scaleDeviceAddr = nullptr; void *quantParamDeviceAddr = nullptr; void *offsetDeviceAddr = nullptr; void *biasDeviceAddr = nullptr; void *outDeviceAddr = nullptr; aclTensor *x1 = nullptr; aclTensor *x2 = nullptr; aclTensor *x2Int4Pack = nullptr; aclTensor *bias = nullptr; aclTensor *scale = nullptr; aclTensor *quantParam = nullptr; aclTensor *offset = nullptr; aclTensor *pertokenScale = nullptr; aclTensor *out = nullptr; std::vector<int8_t> x1HostData(m * k / 2, 17); // int8: 0001 0001 std::vector<int8_t> x2HostData(k * n, 1); std::vector<int8_t> x2Int4PackHostData(n * k / 2, 1); std::vector<int32_t> biasHostData(n, 1); std::vector<float> scaleHostData(n, 1); std::vector<uint16_t> outHostData(m * n, 1); // 创建x1 aclTensor ret = CreateAclTensor(x1HostData, x1Shape, &x1DeviceAddr, x1Dtype, &x1); std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> x1TensorPtr(x1, aclDestroyTensor); std::unique_ptr<void, aclError (*)(void *)> x1DeviceAddrPtr(x1DeviceAddr, aclrtFree); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建x2 aclTensor ret = CreateAclTensor(x2HostData, x2Shape, &x2DeviceAddr, aclDataType::ACL_INT32, &x2); std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> x2TensorPtr(x2, aclDestroyTensor); std::unique_ptr<void, aclError (*)(void *)> x2DeviceAddrPtr(x2DeviceAddr, aclrtFree); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建x2Int4Pack aclTensor ret = CreateAclTensor(x2Int4PackHostData, x2Int4PackShape, &x2Int4PackDeviceAddr, x2Int4PackDtype, &x2Int4Pack); std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> x2Int4PackTensorPtr(x2Int4Pack, aclDestroyTensor); std::unique_ptr<void, aclError (*)(void *)> x2Int4PackDeviceAddrPtr(x2Int4PackDeviceAddr, aclrtFree); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建scale aclTensor ret = CreateAclTensor(scaleHostData, scaleShape, &scaleDeviceAddr, aclDataType::ACL_FLOAT, &scale); std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> scaleTensorPtr(scale, aclDestroyTensor); std::unique_ptr<void, aclError (*)(void *)> scaleDeviceAddrPtr(scaleDeviceAddr, aclrtFree); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建quantParam aclTensor ret = CreateAclTensor(scaleHostData, scaleShape, &quantParamDeviceAddr, aclDataType::ACL_UINT64, &quantParam); std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> quantParamTensorPtr(quantParam, aclDestroyTensor); std::unique_ptr<void, aclError (*)(void *)> quantParamDeviceAddrPtr(quantParamDeviceAddr, aclrtFree); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建bias aclTensor ret = CreateAclTensor(biasHostData, biasShape, &biasDeviceAddr, aclDataType::ACL_INT32, &bias); std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> biasTensorPtr(bias, aclDestroyTensor); std::unique_ptr<void, aclError (*)(void *)> biasDeviceAddrPtr(biasDeviceAddr, aclrtFree); CHECK_RET(ret == ACL_SUCCESS, return ret); // 创建out aclTensor ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT16, &out); std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> outTensorPtr(out, aclDestroyTensor); std::unique_ptr<void, aclError (*)(void *)> outDeviceAddrPtr(outDeviceAddr, aclrtFree); CHECK_RET(ret == ACL_SUCCESS, return ret); bool transposeX1 = false; bool transposeX2 = false; // 3. 调用CANN算子库API,需要修改为具体的Api名称 uint64_t workspaceSize = 0; aclOpExecutor *executor; // 可以先调用aclnnConvertWeightToINT4Pack接口来构建x2输入数据 // 调用aclnnConvertWeightToINT4Pack第一段接口 ret = aclnnConvertWeightToINT4PackGetWorkspaceSize(x2, x2Int4Pack, &workspaceSize, &executor); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnConvertWeightToINT4PackGetWorkspaceSize failed. ERROR: %d\n", ret); return ret); // 根据第一段接口计算出的workspaceSize申请device内存 void *workspaceAddr = nullptr; std::unique_ptr<void, aclError (*)(void *)> workspaceINT4PackAddrPtr(nullptr, aclrtFree); if (workspaceSize > 0) { ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret); workspaceINT4PackAddrPtr.reset(workspaceAddr); } // 调用aclnnConvertWeightToINT4Pack第二段接口 ret = aclnnConvertWeightToINT4Pack(workspaceAddr, workspaceSize, executor, stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnConvertWeightToINT4Pack failed. ERROR: %d\n", ret); return ret); // FLOAT数据类型的scale需要提前调用TransQuantParamV2算子的aclnn接口 // 调用aclnnaclnnTransQuantParamV2第一段接口 ret = aclnnTransQuantParamV2GetWorkspaceSize(scale, offset, quantParam, &workspaceSize, &executor); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnTransQuantParamV2GetWorkspaceSize failed. ERROR: %d\n", ret); return ret); // 根据第一段接口计算出的workspaceSize申请device内存 workspaceAddr = nullptr; std::unique_ptr<void, aclError (*)(void *)> workspaceAddrPtrV2(nullptr, aclrtFree); if (workspaceSize > 0) { ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret); workspaceAddrPtrV2.reset(workspaceAddr); } // 调用aclnnTransQuantParamV2第二段接口 ret = aclnnTransQuantParamV2(workspaceAddr, workspaceSize, executor, stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnTransQuantParamV2 failed. ERROR: %d\n", ret); return ret); // 调用aclnnQuantMatmulV4第一段接口 ret = aclnnQuantMatmulV4GetWorkspaceSize(x1, x2Int4Pack, quantParam, nullptr, pertokenScale, bias, transposeX1, transposeX2, out, &workspaceSize, &executor); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnQuantMatmulV4GetWorkspaceSize failed. ERROR: %d\n", ret); return ret); // 根据第一段接口计算出的workspaceSize申请device内存 workspaceAddr = nullptr; std::unique_ptr<void, aclError (*)(void *)> workspaceAddrPtrV3(nullptr, aclrtFree); if (workspaceSize > 0) { ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret); workspaceAddrPtrV3.reset(workspaceAddr); } // 调用aclnnQuantMatmulV4第二段接口 ret = aclnnQuantMatmulV4(workspaceAddr, workspaceSize, executor, stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnQuantMatmulV4 failed. ERROR: %d\n", ret); return ret); // 4. (固定写法)同步等待任务执行结束 ret = aclrtSynchronizeStream(stream); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret); // 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改 auto size = GetShapeSize(outShape); std::vector<uint16_t> resultData( size, 0); // C语言中无法直接打印fp16的数据,需要用uint16读出来,自行通过二进制转成fp16 ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), outDeviceAddr, size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST); CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret); for (int64_t i = 0; i < size; i++) { LOG_PRINT("result[%ld] is: %u\n", i, resultData[i]); } return ACL_SUCCESS; } int main() { // 1. (固定写法)device/stream初始化,参考AscendCL对外接口列表 // 根据自己的实际device填写deviceId int32_t deviceId = 0; aclrtStream stream; auto ret = aclnnQuantMatmulV4Test(deviceId, stream); CHECK_FREE_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnQuantMatmulV4Test failed. ERROR: %d\n", ret); return ret); Finalize(deviceId, stream); return 0; }