aclnnSigmoidBackward
支持的产品型号
Atlas 推理系列产品 。Atlas 训练系列产品 。Atlas A2 训练系列产品/Atlas 800I A2 推理产品 。
接口原型
每个算子分为两段式接口,必须先调用“aclnnSigmoidBackwardGetWorkspaceSize”接口获取计算所需workspace大小以及包含了算子计算流程的执行器,再调用“aclnnSigmoidBackward”接口执行计算。
aclnnStatus aclnnSigmoidBackwardGetWorkspaceSize(const aclTensor *gradOutput, const aclTensor *output, aclTensor *gradInput, uint64_t *workspaceSize, aclOpExecutor **executor)
aclnnStatus aclnnSigmoidBackward(void* workspace, uint64_t workspaceSize, aclOpExecutor* executor, const aclrtStream stream)
功能描述
- 算子功能: sigmoid的反向传播,根据sigmoid反向传播梯度与正向输出计算sigmoid的梯度输入。
- 计算公式:
其中为sigmoid函数的正向输出,为sigmoid函数的导数。
aclnnSigmoidBackwardGetWorkspaceSize
参数说明:
gradOutput(aclTensor*,计算输入): 公式中的grad_output,支持非连续的Tensor,数据格式支持ND,且shape需要与output,grad_input一致。
Atlas 推理系列产品 、Atlas 训练系列产品 :数据类型支持FLOAT、FLOAT16、DOUBLE、COMPLEX64、COMPLEX128。Atlas A2 训练系列产品/Atlas 800I A2 推理产品 :数据类型支持FLOAT、FLOAT16、BFLOAT16、DOUBLE、COMPLEX64、COMPLEX128。
output(aclTensor*,计算输入): 公式中的out,支持非连续的Tensor,数据格式支持ND,且数据类型、shape需要与grad_output, grad_input一致。
Atlas 推理系列产品 、Atlas 训练系列产品 :数据类型支持FLOAT、FLOAT16、DOUBLE、COMPLEX64、COMPLEX128。Atlas A2 训练系列产品/Atlas 800I A2 推理产品 :数据类型支持FLOAT、FLOAT16、BFLOAT16、DOUBLE、COMPLEX64、COMPLEX128。
gradInput(aclTensor *,计算输出): 公式中的grad_intput,支持非连续的Tensor,数据格式支持ND,且数据类型、shape需要与grad_output, output一致。
Atlas 推理系列产品 、Atlas 训练系列产品 :数据类型支持FLOAT、FLOAT16、DOUBLE、COMPLEX64、COMPLEX128。Atlas A2 训练系列产品/Atlas 800I A2 推理产品 :数据类型支持FLOAT、FLOAT16、BFLOAT16、DOUBLE、COMPLEX64、COMPLEX128。
workspaceSize(uint64_t *,出参):返回需要在Device侧申请的workspace大小。
executor(aclOpExecutor **,出参):返回op执行器,包含了算子计算流程。
返回值:
aclnnStatus: 返回状态码,具体参见aclnn返回码。
161001(ACLNN_ERR_PARAM_NULLPTR):1. 传入的gradOutput、output或gradInput是空指针。
161002(ACLNN_ERR_PARAM_INVALID):1. gradOutput、output或gradInput的数据类型和数据格式不在支持的范围之内。
2. gradOutput、output或gradInput shape不一致
aclnnSigmoidBackward
参数说明:
workspace(void *,入参):在Device侧申请的workspace内存地址。
workspaceSize(uint64_t,入参):在Device侧申请的workspace大小,由第一段接口aclnnSigmoidBackwardGetWorkspaceSize获取。
executor(aclOpExecutor *,入参):op执行器,包含了算子计算流程。
stream(aclrtStream,入参):指定执行任务的AscendCL Stream流。
返回值:
aclnnStatus: 返回状态码,具体参见aclnn返回码。
约束与限制
无。
调用示例
示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例。
#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_sigmoid_backward.h"
#define CHECK_RET(cond, return_expr) \
do { \
if (!(cond)) { \
return_expr; \
} \
} while (0)
#define LOG_PRINT(message, ...) \
do { \
printf(message, ##__VA_ARGS__); \
} while (0)
int64_t GetShapeSize(const std::vector<int64_t>& shape) {
int64_t shapeSize = 1;
for (auto i : shape) {
shapeSize *= i;
}
return shapeSize;
}
int Init(int32_t deviceId, aclrtStream* stream) {
// 固定写法,AscendCL初始化
auto ret = aclInit(nullptr);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
ret = aclrtSetDevice(deviceId);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
ret = aclrtCreateStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
return 0;
}
template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
aclDataType dataType, aclTensor** tensor) {
auto size = GetShapeSize(shape) * sizeof(T);
// 调用aclrtMalloc申请device侧内存
auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
// 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
// 计算连续tensor的strides
std::vector<int64_t> strides(shape.size(), 1);
for (int64_t i = shape.size() - 2; i >= 0; i--) {
strides[i] = shape[i + 1] * strides[i + 1];
}
// 调用aclCreateTensor接口创建aclTensor
*tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
shape.data(), shape.size(), *deviceAddr);
return 0;
}
int main() {
// 1. (固定写法)device/stream初始化,参考AscendCL对外接口列表
// 根据自己的实际device填写deviceId
int32_t deviceId = 0;
aclrtStream stream;
auto ret = Init(deviceId, &stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
// 2. 构造输入与输出,需要根据API的接口自定义构造
std::vector<int64_t> gradOutputShape = {2, 2};
std::vector<int64_t> outputShape = {2, 2};
std::vector<int64_t> gradInputShape = {2, 2};
void* gradOutputDeviceAddr = nullptr;
void* outputDeviceAddr = nullptr;
void* gradInputDeviceAddr = nullptr;
aclTensor* gradOutput = nullptr;
aclTensor* output = nullptr;
aclTensor* gradInput = nullptr;
std::vector<float> gradOutputHostData = {1, 1, 1, 1};
std::vector<float> outputHostData = {1, 2, 3, 4};
std::vector<float> gradInputHostData(4, 0);
// 创建gradOutput aclTensor
ret = CreateAclTensor(gradOutputHostData, gradOutputShape, &gradOutputDeviceAddr, aclDataType::ACL_FLOAT, &gradOutput);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建output aclTensor
ret = CreateAclTensor(outputHostData, outputShape, &outputDeviceAddr, aclDataType::ACL_FLOAT, &output);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建gradInput aclTensor
ret = CreateAclTensor(gradInputHostData, gradInputShape, &gradInputDeviceAddr, aclDataType::ACL_FLOAT, &gradInput);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 3. 调用CANN算子库API,需要修改为具体的Api名称
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
// 调用aclnnSigmoidBackward第一段接口
ret = aclnnSigmoidBackwardGetWorkspaceSize(gradOutput, output, gradInput, &workspaceSize, &executor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnSigmoidBackwardGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
void* workspaceAddr = nullptr;
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
}
// 调用aclnnSigmoidBackward第二段接口
ret = aclnnSigmoidBackward(workspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnSigmoidBackward failed. ERROR: %d\n", ret); return ret);
// 4. (固定写法)同步等待任务执行结束
ret = aclrtSynchronizeStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
// 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
auto size = GetShapeSize(gradInputShape);
std::vector<float> resultData(size, 0);
ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), gradInputDeviceAddr,
size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
for (int64_t i = 0; i < size; i++) {
LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]);
}
// 6. 释放aclTensor,需要根据具体API的接口定义修改
aclDestroyTensor(gradOutput);
aclDestroyTensor(output);
aclDestroyTensor(gradInput);
// 7. 释放device资源,需要根据具体API的接口定义参数
aclrtFree(gradOutputDeviceAddr);
aclrtFree(outputDeviceAddr);
aclrtFree(gradInputDeviceAddr);
if (workspaceSize > 0) {
aclrtFree(workspaceAddr);
}
aclrtDestroyStream(stream);
aclrtResetDevice(deviceId);
aclFinalize();
return 0;
}