下载
中文
注册

aclnnStdMeanCorrection

支持的产品型号

  • Atlas 训练系列产品
  • Atlas A2 训练系列产品/Atlas 800I A2 推理产品

接口原型

每个算子分为两段式接口,必须先调用“aclnnStdMeanCorrectionGetWorkspaceSize”接口获取入参并根据计算流程计算所需workspace大小,再调用“aclnnStdMeanCorrection”接口执行计算。

  • aclnnStatus aclnnStdMeanCorrectionGetWorkspaceSize(const aclTensor* self, const aclIntArray* dim, int64_t correction, bool keepdim, aclTensor* stdOut, aclTensor* meanOut, uint64_t* workspaceSize, aclOpExecutor** executor)
  • aclnnStatus aclnnStdMeanCorrection(void* workspace, uint64_t workspaceSize, aclOpExecutor* executor, const aclrtStream stream)

功能描述

  • 算子功能:计算样本标准差和均值。
  • 计算公式: 假设 dim 为 ii,则对该维度进行计算。NN为该维度的 shape。取 selfiself_{i},求出该维度上的平均值 xiˉ\bar{x_{i}}{meanOut=xiˉstdOut=1NδNj=0N1(selfijxiˉ)2\left\{ \begin{array} {rcl} meanOut& &= \bar{x_{i}}\\ stdOut& &= \sqrt{\frac{1}{N - \delta N}\sum_{j=0}^{N-1}(self_{ij}-\bar{x_{i}})^2} \end{array} \right.keepdim = true时,reduce后保留该维度,且输出shape中该维度值为1;当keepdim = false时,不保留。

aclnnStdMeanCorrectionGetWorkspaceSize

  • 参数说明

    • self(aclTensor*, 计算输入):公式中的self,Device侧的aclTensor,支持非连续的Tensor
      • Atlas 训练系列产品:数据类型支持FLOAT、FLOAT16。数据格式支持ND。
      • Atlas A2 训练系列产品/Atlas 800I A2 推理产品:数据类型支持FLOAT、BFLOAT16、FLOAT16。数据格式支持ND。
    • dim(aclIntArray*, 计算输入):公式中的dim,Host侧的aclIntArray,参与计算的维度,取值范围为[-self.dim(), self.dim()-1],支持的数据类型为INT32、INT64。
    • correction(int64_t*, 计算输入):公式中$\delta N$,Host侧的整型,修正值。
    • keepdim(bool*, 计算输入):公式中keepdim,Host侧的布尔型,是否在输出张量中保留输入张量的维度。
    • stdOut(aclTensor*, 计算输出):公式中stdOut,Device侧的aclTensor,支持非连续的Tensor
      • Atlas 训练系列产品:数据类型支持FLOAT、FLOAT16。数据格式支持ND。
      • Atlas A2 训练系列产品/Atlas 800I A2 推理产品:数据类型支持FLOAT、BFLOAT16、FLOAT16。数据格式支持ND。
    • meanOut(aclTensor*, 计算输出):公式中meanOut,Device侧的aclTensor,支持非连续的Tensor
      • Atlas 训练系列产品:数据类型支持FLOAT、FLOAT16。数据格式支持ND。
      • Atlas A2 训练系列产品/Atlas 800I A2 推理产品:数据类型支持FLOAT、BFLOAT16、FLOAT16。数据格式支持ND。
    • workspaceSize(uint64_t*, 出参):返回需要在Device侧申请的workspace大小。
    • executor(aclOpExecutor**, 出参):返回op执行器,包含了算子计算流程。
  • 返回值:

    aclnnStatus: 返回状态码,具体参见aclnn返回码

    第一段接口完成入参校验,出现以下场景时报错:
    返回161001(ACLNN_ERR_PARAM_INVALID):1. 传入的 self、stdOut、meanOut是空指针时。
    返回161002(ACLNN_ERR_PARAM_INVALID):1. self、stdOut、meanOut数据类型不在支持的范围之内。
                                          2. dim 数组中的维度超出 self 的维度范围。
                                          3. dim 数组中元素重复。
                                          4. stdOut的shape出现如下情况会出错:
                                            keepdim为true时,stdOut.shape != self.shape(指定维度dim设置为1的形状);
                                            keepdim为false时,stdOut.shape != self.shape(去除指定维度dim后的形状)
                                          5. meanOut的shape出现如下情况会出错:
                                            keepdim为true时,meanOut.shape != self.shape(指定维度dim设置为1的形状);
                                            keepdim为false时,meanOut.shape != self.shape(去除指定维度dim后的形状)

aclnnStdMeanCorrection

  • 参数说明

    • workspace(void*, 入参):在Device侧申请的workspace内存地址。
    • workspaceSize(uint64_t, 入参):在Device侧申请的workspace大小,由第一段接口aclnnStdMeanCorrectionGetWorkspaceSize获取。
    • executor(aclOpExecutor*, 入参):op执行器,包含了算子计算流程。
    • stream(aclrtStream, 入参):指定执行任务的AscendCL Stream流。
  • 返回值:

    aclnnStatus:返回状态码,具体参见aclnn返回码

约束与限制

调用示例

示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例

#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_std_mean_correction.h"

#define CHECK_RET(cond, return_expr) \
  do {                               \
    if (!(cond)) {                   \
      return_expr;                   \
    }                                \
  } while (0)

#define LOG_PRINT(message, ...)     \
  do {                              \
    printf(message, ##__VA_ARGS__); \
  } while (0)

int64_t GetShapeSize(const std::vector<int64_t>& shape) {
  int64_t shape_size = 1;
  for (auto i : shape) {
    shape_size *= i;
  }
  return shape_size;
}

int Init(int32_t deviceId, aclrtStream* stream) {
  // 固定写法,AscendCL初始化
  auto ret = aclInit(nullptr);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
  ret = aclrtSetDevice(deviceId);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
  ret = aclrtCreateStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
  return 0;
}

template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
                    aclDataType dataType, aclTensor** tensor) {
  auto size = GetShapeSize(shape) * sizeof(T);
  // 调用aclrtMalloc申请device侧内存
  auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);

  // 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
  ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);

  // 计算连续tensor的strides
  std::vector<int64_t> strides(shape.size(), 1);
  for (int64_t i = shape.size() - 2; i >= 0; i--) {
    strides[i] = shape[i + 1] * strides[i + 1];
  }

  // 调用aclCreateTensor接口创建aclTensor
  *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
                            shape.data(), shape.size(), *deviceAddr);
  return 0;
}

int main() {
  // 1. (固定写法)device/stream初始化, 参考AscendCL对外接口列表
  // 根据自己的实际device填写deviceId
  int32_t deviceId = 0;
  aclrtStream stream;
  auto ret = Init(deviceId, &stream);
  // check根据自己的需要处理
  CHECK_RET(ret == 0, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
  // 2. 构造输入与输出,需要根据API的接口自定义构造
  std::vector<int64_t> selfShape = {2, 3, 4};
  std::vector<int64_t> stdOutShape = {2, 4};
  std::vector<int64_t> meanOutShape = {2, 4};
  void* selfDeviceAddr = nullptr;
  void* stdOutDeviceAddr = nullptr;
  void* meanOutDeviceAddr = nullptr;
  aclTensor* self = nullptr;
  aclTensor* stdOut = nullptr;
  aclTensor* meanOut = nullptr;
  std::vector<float> selfHostData = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
                                     19, 20, 21, 22, 23, 24};
  std::vector<float> stdOutHostData = {1, 2, 3, 4, 5, 6, 7, 8.0};
  std::vector<float> meanOutHostData = {1, 2, 3, 4, 5, 6, 7, 8.0};
  std::vector<int64_t> dimData = {1};
  int64_t correction = 1;
  bool keepdim = false;
  // 创建self aclTensor
  ret = CreateAclTensor(selfHostData, selfShape, &selfDeviceAddr, aclDataType::ACL_FLOAT, &self);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建stdOut aclTensor
  ret = CreateAclTensor(stdOutHostData, stdOutShape, &stdOutDeviceAddr, aclDataType::ACL_FLOAT, &stdOut);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建meanOut aclTensor
  ret = CreateAclTensor(meanOutHostData, meanOutShape, &meanOutDeviceAddr, aclDataType::ACL_FLOAT, &meanOut);
  CHECK_RET(ret == ACL_SUCCESS, return ret);

  const aclIntArray *dim = aclCreateIntArray(dimData.data(), dimData.size());
  CHECK_RET(dim != nullptr, return ACL_ERROR_INTERNAL_ERROR);

  // 3. 调用CANN算子库API,需要修改为具体的API
  uint64_t workspaceSize = 0;
  aclOpExecutor* executor;
  // 调用aclnnStdMeanCorrection第一段接口
  ret = aclnnStdMeanCorrectionGetWorkspaceSize(self, dim, correction, keepdim, stdOut, meanOut, &workspaceSize, &executor);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnStdMeanCorrectionGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
  // 根据第一段接口计算出的workspaceSize申请device内存
  void* workspaceAddr = nullptr;
  if (workspaceSize > 0) {
    ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret;);
  }
  // 调用aclnnStdMeanCorrection第二段接口
  ret = aclnnStdMeanCorrection(workspaceAddr, workspaceSize, executor, stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnStdMeanCorrection failed. ERROR: %d\n", ret); return ret);
  // 4. (固定写法)同步等待任务执行结束
  ret = aclrtSynchronizeStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
  // 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
  auto size = GetShapeSize(stdOutShape);
  std::vector<float> stdResultData(size, 0);
  ret = aclrtMemcpy(stdResultData.data(), stdResultData.size() * sizeof(stdResultData[0]), stdOutDeviceAddr, size * sizeof(float),
                    ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
  for (int64_t i = 0; i < size; i++) {
    LOG_PRINT("stdResultData[%ld] is: %f\n", i, stdResultData[i]);
  }

  std::vector<float> meanResultData(size, 0);
  ret = aclrtMemcpy(meanResultData.data(), meanResultData.size() * sizeof(meanResultData[0]), meanOutDeviceAddr, size * sizeof(float),
                    ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
  for (int64_t i = 0; i < size; i++) {
    LOG_PRINT("meanResultData[%ld] is: %f\n", i, meanResultData[i]);
  }

  // 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
  aclDestroyTensor(self);
  aclDestroyTensor(stdOut);
  aclDestroyTensor(meanOut);

  // 7. 释放device资源,需要根据具体API的接口定义修改
  aclrtFree(selfDeviceAddr);
  aclrtFree(stdOutDeviceAddr);
  aclrtFree(meanOutDeviceAddr);
  if (workspaceSize > 0) {
    aclrtFree(workspaceAddr);
  }
  aclrtDestroyStream(stream);
  aclrtResetDevice(deviceId);
  aclFinalize();
  return 0;
}