aclnnSwinAttentionScoreQuant
支持的产品型号
Atlas 推理系列产品 。
接口原型
每个算子分为两段式接口,必须先调用“aclnnSwinAttentionScoreQuantGetWorkspaceSize”接口获取计算所需workspace大小以及包含了算子计算流程的执行器,再调用“aclnnSwinAttentionScoreQuant”接口执行计算。
aclnnStatus aclnnSwinAttentionScoreQuantGetWorkspaceSize(const aclTensor *query, const aclTensor *key, const aclTensor *value, const aclTensor *scaleQuant, const aclTensor *scaleDequant1, const aclTensor *scaleDequant2, const aclTensor *biasQuantOptional, const aclTensor *biasDequant1Optional, const aclTensor *biasDequant2Optional, const aclTensor *paddingMask1Optional, const aclTensor *paddingMask2Optional, bool queryTransposeOptional, bool keyTransposeOptional, bool valueTransposeOptional, int64_t softmaxAxesOptional, const aclTensor *out, uint64_t *workspaceSize, aclOpExecutor **executor)
aclnnStatus aclnnSwinAttentionScoreQuant(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)
功能描述
- 算子功能:支持SwinAttentionScore算子量化
- 计算公式如下:
aclnnSwinAttentionScoreQuantGetWorkspaceSize
- 参数说明:
- query(aclTensor*,计算输入): 公式中的输入Q,维度支持四维,输入维度[N,C,S,H],S<=1024,H=32/64,NC维度支持任意值,数据类型支持INT8类型,数据格式支持ND。
- key(aclTensor*,计算输入): 公式中的输入K,维度支持四维,输入维度[N,C,S,H],S<=1024,H=32/64,NC维度支持任意值,数据类型支持INT8类型,数据格式支持ND。
- value(aclTensor*,计算输入): 公式中的输入V,维度支持四维,输入维度[N,C,S,H],S<=1024,H=32/64,NC维度支持任意值,数据类型支持INT8类型,数据格式支持ND。
- scaleQuant(aclTensor*,计算输入): 维度支持二维,输入维度[1,S],S<=1024,数据类型支持FLOAT16,数据格式支持ND。
- scaleDequant1(aclTensor*,计算输入): 维度支持二维,输入维度[1,S],S<=1024,数据类型支持UINT64,数据格式支持ND。
- scaleDequant2(aclTensor*,计算输入): 维度支持二维,输入维度[1,H],H=32/64,数据类型支持UINT64,数据格式支持ND。
- biasQuantOptional(aclTensor*,计算输入): 当前不支持输入nullptr,维度支持二维,输入维度[1,S],S<=1024,数据类型支持FLOAT16,数据格式支持ND。(可选)
- biasDequant1Optional(aclTensor*,计算输入): 当前不支持输入nullptr,维度支持二维,输入维度[1,S],S<=1024,输入支持INT32类型,数据格式支持ND。(可选)
- biasDequant2Optional(aclTensor*,计算输入): 当前不支持输入nullptr,维度支持二维,输入维度[1,H],H=32/64,输入支持INT32类型,数据格式支持ND。(可选)
- paddingMask1Optional(aclTensor*,计算输入): 支持输入nullptr,维度支持四维,输入维度[1,C,S,S],S<=1024,C维度支持任意值,数据格式支持ND,输入支持FLOAT16类型。(可选)。
- paddingMask2Optional(aclTensor*,计算输入): 当前仅支持输入nullptr。(可选)。
- queryTransposeOptional(bool,计算输入): query是否转置,当前仅支持不转置false。(可选)。
- keyTransposeOptional(bool,计算输入): query是否转置,当前仅支持不转置false。(可选)。
- valueTransposeOptional(bool,计算输入): query是否转置,当前仅支持不转置false。(可选)。
- softmaxAxesOptional(int,计算输入): softmax计算时处理的维度的序号,当前仅支持最后一维-1。(可选)。
- out(aclTensor*, 计算输出):维度支持四维,输入维度[N,C,S,H],S<=1024,H=32/64,数据类型支持支持FLOAT16,数据格式支持ND,不支持非连续Tensor。
- workspaceSize(uint64_t*, 出参):返回需要在Device侧申请的workspace大小。
- executor(aclOpExecutor**, 出参):返回op执行器,包含了算子计算流程。
- 返回值: aclnnStatus:返回状态码,具体参见aclnn返回码。
第一段接口完成入参校验,若出现以下错误码,则对应原因为:
返回161001(ACLNN_ERR_PARAM_NULLPTR): 1. 传入的query、key、value、scaleQuant、scaleDequant1、scaleDequant2、biasQuantOptional、biasDequant1Optional、biasDequant2、attentionScore是空指针。
返回161002(ACLNN_ERR_PARAM_INVALID): 1. query、key、value、scaleQuant、scaleDequant1、scaleDequant2、biasQuantOptional、biasDequant1Optional、biasDequant2Optional、paddingMask1Optional、paddingMask2Optional、attentionScore的数据类型不在支持的范围之内。
2. query、key、value、scaleQuant、scaleDequant1、scaleDequant2、biasQuantOptional、biasDequant1Optional、biasDequant2Optional、paddingMask1Optional、paddingMask2Optional无法做数据类型推导。
3. 推导出的数据类型无法转换为指定输出attentionScore的类型。
4. query、key、value、scaleQuant、scaleDequant1、scaleDequant2、biasQuantOptional、biasDequant1Optional、biasDequant2Optional、paddingMask1Optional、paddingMask2Optional的shape和各维度的大小不符合要求。
aclnnSwinAttentionScoreQuant
参数说明
- workspace(void *,入参):在Device侧申请的workspace内存地址。
- workspaceSize(uint64_t,入参):在Device侧申请的workspace大小,由第一段接口aclnnSwinAttentionScoreQuantGetWorkspaceSize获取。
- executor(aclOpExecutor *,入参):op执行器,包含了算子计算流程。
- stream(aclrtStream,入参):指定执行任务的AscendCL Stream流。
返回值
返回aclnnStatus状态码,具体参见aclnn返回码。
约束与限制
- QKV输入维度是[N,C,S,H]的情况下,S<=1024,H=32/64,NC维度支持任意值
- 不支持维度是[N,C,S,H]的QKV转置后输入
- 只支持非对称量化
- 不支持加bias2的功能
- 只支持对QK^T + bias1 + bias2的最后一维进行softmax操作
调用示例
示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例。
#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_swin_attention_score_quant.h"
#define CHECK_RET(cond, return_expr) \
do { \
if (!(cond)) { \
return_expr; \
} \
} while (0)
#define LOG_PRINT(message, ...) \
do { \
printf(message, ##__VA_ARGS__); \
} while (0)
int64_t GetShapeSize(const std::vector<int64_t>& shape) {
int64_t shapeSize = 1;
for (auto i : shape) {
shapeSize *= i;
}
return shapeSize;
}
int Init(int32_t deviceId, aclrtStream* stream) {
// 固定写法,AscendCL初始化
auto ret = aclInit(nullptr);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
ret = aclrtSetDevice(deviceId);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
ret = aclrtCreateStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
return 0;
}
template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
aclDataType dataType, aclTensor** tensor) {
auto size = GetShapeSize(shape) * sizeof(T);
// 调用aclrtMalloc申请device侧内存
auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
// 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
// 计算连续tensor的strides
std::vector<int64_t> strides(shape.size(), 1);
for (int64_t i = shape.size() - 2; i >= 0; i--) {
strides[i] = shape[i + 1] * strides[i + 1];
}
// 调用aclCreateTensor接口创建aclTensor
*tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
shape.data(), shape.size(), *deviceAddr);
return 0;
}
int main() {
// 1. (固定写法)device/stream初始化,参考AscendCL对外接口列表
// 根据自己的实际device填写deviceId
int32_t deviceId = 0;
aclrtStream stream;
auto ret = Init(deviceId, &stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
// 2. 构造输入与输出,需要根据API的接口自定义构造
int64_t B = 1288;
int64_t N = 3;
int64_t S = 49;
int64_t H = 32;
std::vector<int64_t> qkvShape = {B, N, S, H};
std::vector<int64_t> sShape = {1, S};
std::vector<int64_t> hShape = {1, H};
std::vector<int64_t> mask1Shape = {1, N, S, S};
std::vector<int64_t> attentionScoreShape = {B, N, S, H};
void* queryDeviceAddr = nullptr;
void* keyDeviceAddr = nullptr;
void* valueDeviceAddr = nullptr;
void* scaleQuantDeviceAddr = nullptr;
void* scaleDequant1DeviceAddr = nullptr;
void* scaleDequant2DeviceAddr = nullptr;
void* biasQuantDeviceAddr = nullptr;
void* biasDequant1DeviceAddr = nullptr;
void* biasDequant2DeviceAddr = nullptr;
void* paddingMask1DeviceAddr = nullptr;
void* attentionScoreDeviceAddr = nullptr;
aclTensor* query = nullptr;
aclTensor* key = nullptr;
aclTensor* value = nullptr;
aclTensor* scaleQuant = nullptr;
aclTensor* scaleDequant1 = nullptr;
aclTensor* scaleDequant2 = nullptr;
aclTensor* biasQuantOptional = nullptr;
aclTensor* biasDequant1Optional = nullptr;
aclTensor* biasDequant2Optional = nullptr;
aclTensor* paddingMask1Optional = nullptr;
aclTensor* paddingMask2Optional = nullptr;
aclTensor* attentionScore = nullptr;
std::vector<int8_t> queryHostData(B*N*S*H, 1);
std::vector<int8_t> keyHostData(B*N*S*H, 1);
std::vector<int8_t> valueHostData(B*N*S*H, 1);
std::vector<uint16_t> scaleQuantHostData(S, 1);
std::vector<uint64_t> scaleDequant1HostData(S, 1);
std::vector<uint64_t> scaleDequant2HostData(H, 1);
std::vector<uint16_t> biasQuantHostData(S, 1);
std::vector<int32_t> biasDequant1HostData(S, 1);
std::vector<int32_t> biasDequant2HostData(H, 1);
std::vector<uint16_t> paddingMask1HostData(1*N*S*H, 1);
std::vector<uint16_t> attentionScoreHostData(B*N*S*H, 0);
// 创建input aclTensor
ret = CreateAclTensor(queryHostData, qkvShape, &queryDeviceAddr, aclDataType::ACL_INT8, &query);
CHECK_RET(ret == ACL_SUCCESS, return ret);
ret = CreateAclTensor(keyHostData, qkvShape, &keyDeviceAddr, aclDataType::ACL_INT8, &key);
CHECK_RET(ret == ACL_SUCCESS, return ret);
ret = CreateAclTensor(valueHostData, qkvShape, &valueDeviceAddr, aclDataType::ACL_INT8, &value);
CHECK_RET(ret == ACL_SUCCESS, return ret);
ret = CreateAclTensor(scaleQuantHostData, sShape, &scaleQuantDeviceAddr, aclDataType::ACL_FLOAT16, &scaleQuant);
CHECK_RET(ret == ACL_SUCCESS, return ret);
ret = CreateAclTensor(scaleDequant1HostData, sShape, &scaleDequant1DeviceAddr, aclDataType::ACL_UINT64, &scaleDequant1);
CHECK_RET(ret == ACL_SUCCESS, return ret);
ret = CreateAclTensor(scaleDequant2HostData, hShape, &scaleDequant2DeviceAddr, aclDataType::ACL_UINT64, &scaleDequant2);
CHECK_RET(ret == ACL_SUCCESS, return ret);
ret = CreateAclTensor(biasQuantHostData, sShape, &biasQuantDeviceAddr, aclDataType::ACL_FLOAT16, &biasQuantOptional);
CHECK_RET(ret == ACL_SUCCESS, return ret);
ret = CreateAclTensor(biasDequant1HostData, sShape, &biasDequant1DeviceAddr, aclDataType::ACL_INT32, &biasDequant1Optional);
CHECK_RET(ret == ACL_SUCCESS, return ret);
ret = CreateAclTensor(biasDequant2HostData, hShape, &biasDequant2DeviceAddr, aclDataType::ACL_INT32, &biasDequant2Optional);
CHECK_RET(ret == ACL_SUCCESS, return ret);
ret = CreateAclTensor(paddingMask1HostData, mask1Shape, &paddingMask1DeviceAddr, aclDataType::ACL_FLOAT16, &paddingMask1Optional);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建out aclTensor
ret = CreateAclTensor(attentionScoreHostData, attentionScoreShape, &attentionScoreDeviceAddr, aclDataType::ACL_FLOAT16, &attentionScore);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// aclnn接口调用示例
// 3. 调用CANN算子库API
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
// 调用aclnn第一段接口
ret = aclnnSwinAttentionScoreQuantGetWorkspaceSize(query, key, value, scaleQuant, scaleDequant1, scaleDequant2,
biasQuantOptional, biasDequant1Optional, biasDequant2Optional, paddingMask1Optional, paddingMask2Optional,
false, false, false, -1, attentionScore, &workspaceSize, &executor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnSubsGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
void* workspaceAddr = nullptr;
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
}
// 调用aclnn第二段接口
ret = aclnnSwinAttentionScoreQuant(workspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnSubs failed. ERROR: %d\n", ret); return ret);
// 4. (固定写法)同步等待任务执行结束
ret = aclrtSynchronizeStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
// 5. 获取输出的值,将device侧内存上的结果拷贝至host侧
auto size = GetShapeSize(attentionScoreShape);
std::vector<uint16_t> resultData(size, 0);
ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), attentionScoreDeviceAddr,
size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
for (int64_t i = 0; i < size; i++) {
LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]);
}
// 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
aclDestroyTensor(query);
aclDestroyTensor(key);
aclDestroyTensor(value);
aclDestroyTensor(scaleQuant);
aclDestroyTensor(scaleDequant1);
aclDestroyTensor(scaleDequant2);
aclDestroyTensor(biasQuantOptional);
aclDestroyTensor(biasDequant1Optional);
aclDestroyTensor(biasDequant2Optional);
aclDestroyTensor(paddingMask1Optional);
aclDestroyTensor(attentionScore);
// 7. 释放device资源,需要根据具体API的接口定义修改
aclrtFree(queryDeviceAddr);
aclrtFree(keyDeviceAddr);
aclrtFree(valueDeviceAddr);
aclrtFree(scaleQuantDeviceAddr);
aclrtFree(scaleDequant1DeviceAddr);
aclrtFree(scaleDequant2DeviceAddr);
aclrtFree(biasQuantDeviceAddr);
aclrtFree(biasDequant1DeviceAddr);
aclrtFree(biasDequant2DeviceAddr);
aclrtFree(paddingMask1DeviceAddr);
aclrtFree(attentionScoreDeviceAddr);
if (workspaceSize > 0) {
aclrtFree(workspaceAddr);
}
aclrtDestroyStream(stream);
aclrtResetDevice(deviceId);
aclFinalize();
return 0;
}