下载
中文
注册
我要评分
文档获取效率
文档正确性
内容完整性
文档易理解
在线提单
论坛求助
昇腾小AI

InitConstValue

功能说明

初始化LocalTensor(TPosition为A1/A2/B1/B2)为某一个具体的数值。

函数原型

template <typename T>

__aicore__ inline void InitConstValue(const LocalTensor<T> &dstLocal, const InitConstValueParams<T> &InitConstValueParams);

参数说明

表1 参数说明

参数名称

输入/输出

含义

dstLocal

输出

目的操作数,结果矩阵,类型为LocalTensor,支持的TPosition为A1/A2/B1/B2。

如果TPosition为A1/B1,起始地址需要满足32B对齐;如果TPosition为A2/B2,起始地址需要满足512B对齐。

Atlas 训练系列产品,支持的数据类型为:half

Atlas推理系列产品AI Core,支持的数据类型为:half/int16_t/uint16_t

Atlas A2训练系列产品/Atlas 800I A2推理产品,支持的数据类型为:half/int16_t/uint16_t/bfloat16_t/float/int32_t/uint32_t

InitConstValueParams

输入

初始化相关参数,类型为InitConstValueParams,结构体具体定义为:

struct InitConstValueParams
{
    uint16_t repeatTimes;
    uint16_t blockNum;
    uint16_t dstGap;
    T initValue;
};

参数说明请参考表2

Atlas 训练系列产品只支持配置repeatTimes,initValue,其他参数配置无效

Atlas推理系列产品AI Core只支持配置repeatTimes,initValue,其他参数配置无效

Atlas A2训练系列产品/Atlas 800I A2推理产品支持配置所有参数

表2 InitConstValueParams结构体参数说明

参数名称

含义

repeatTimes

迭代次数。默认值为0。

Atlas 训练系列产品:repeatTimes∈[0, 255],每次迭代处理512B数据。

Atlas推理系列产品AI Core:repeatTimes∈[0, 255],每次迭代处理512B数据。

Atlas A2训练系列产品/Atlas 800I A2推理产品:repeatTimes∈[0, 32767] 。

  • dstLocal的位置为A1/B1时,每次迭代处理blockNum*32B;
  • dstLocal的位置为A2/B2时,每次迭代处理blockNum*512B。

blockNum

每次迭代初始化的数据块个数,取值范围:blockNum∈[0, 32767] 。默认值为0。

  • dstLocal的位置为A1/B1时,每一个block(数据块)大小是32B;
  • dstLocal的位置为A2/B2时,每一个block(数据块)大小是512B。

dstGap

目的操作数前一个迭代结束地址到后一个迭代起始地址之间的距离。

  • dstLocal的位置为A1/B1时,单位是32B;
  • dstLocal的位置为A2/B2时,单位是512B。

取值范围:dstGap∈[0, 32767] 。默认值为0。

initValue

初始化的value值,支持的数据类型与dstLocal保持一致。

注意事项

支持的型号

Atlas 训练系列产品

Atlas推理系列产品AI Core

Atlas A2训练系列产品/Atlas 800I A2推理产品

调用示例

#include "kernel_operator.h"
namespace AscendC {
template <typename dst_T, typename fmap_T, typename weight_T, typename dstCO1_T> class KernelCubeMmad {
public:
    __aicore__ inline KernelCubeMmad()
    {
        C0 = 32 / sizeof(fmap_T);
        C1 = channelSize / C0;
        coutBlocks = (Cout + 16 - 1) / 16;
        ho = H - dilationH * (Kh - 1);
        wo = W - dilationW * (Kw - 1);
        howo = ho * wo;
        howoRound = ((howo + 16 - 1) / 16) * 16;
        featureMapA1Size = C1 * H * W * C0;      // shape: [C1, H, W, C0]
        weightA1Size = C1 * Kh * Kw * Cout * C0; // shape: [C1, Kh, Kw, Cout, C0]
        featureMapA2Size = howoRound * (C1 * Kh * Kw * C0);
        weightB2Size = (C1 * Kh * Kw * C0) * coutBlocks * 16;
        m = howo;
        k = C1 * Kh * Kw * C0;
        n = Cout;
        biasSize = Cout;                  // shape: [Cout]
        dstSize = coutBlocks * howo * 16; // shape: [coutBlocks, howo, 16]
        dstCO1Size = coutBlocks * howoRound * 16;
        fmRepeat = featureMapA2Size / (16 * C0);
        weRepeat = weightB2Size / (16 * C0);
    }
    __aicore__ inline void Init(__gm__ uint8_t* fmGm, __gm__ uint8_t* weGm, __gm__ uint8_t* biasGm,
        __gm__ uint8_t* dstGm)
    {
        fmGlobal.SetGlobalBuffer((__gm__ fmap_T*)fmGm);
        weGlobal.SetGlobalBuffer((__gm__ weight_T*)weGm);
        biasGlobal.SetGlobalBuffer((__gm__ dstCO1_T*)biasGm);
        dstGlobal.SetGlobalBuffer((__gm__ dst_T*)dstGm);
        pipe.InitBuffer(inQueueFmA1, 1, featureMapA1Size * sizeof(fmap_T));
        pipe.InitBuffer(inQueueFmA2, 1, featureMapA2Size * sizeof(fmap_T));
        pipe.InitBuffer(inQueueWeB1, 1, weightA1Size * sizeof(weight_T));
        pipe.InitBuffer(inQueueWeB2, 1, weightB2Size * sizeof(weight_T));
        pipe.InitBuffer(inQueueBiasA1, 1, biasSize * sizeof(dstCO1_T));
        pipe.InitBuffer(outQueueCO1, 1, dstCO1Size * sizeof(dstCO1_T));
    }
    __aicore__ inline void Process()
    {
        CopyIn();
        Split();
        Compute();
        CopyOut();
    }

private:
    __aicore__ inline void CopyIn()
    {
        LocalTensor<fmap_T> featureMapA1 = inQueueFmA1.AllocTensor<fmap_T>();
        LocalTensor<weight_T> weightB1 = inQueueWeB1.AllocTensor<weight_T>();
        LocalTensor<dstCO1_T> biasA1 = inQueueBiasA1.AllocTensor<dstCO1_T>();

        InitConstValue(featureMapA1, {1, static_cast<uint16_t>(featureMapA1Size * sizeof(fmap_T) / 32), 0, 1});
        InitConstValue(weightB1, {1, static_cast<uint16_t>(weightA1Size * sizeof(weight_T) / 32), 0, 2});
        DataCopy(biasA1, biasGlobal, { 1, static_cast<uint16_t>(biasSize * sizeof(dstCO1_T) / 32), 0, 0 });

        inQueueFmA1.EnQue(featureMapA1);
        inQueueWeB1.EnQue(weightB1);
        inQueueBiasA1.EnQue(biasA1);
    }
    __aicore__ inline void Split()
    {
        LocalTensor<fmap_T> featureMapA1 = inQueueFmA1.DeQue<fmap_T>();
        LocalTensor<weight_T> weightB1 = inQueueWeB1.DeQue<weight_T>();
        LocalTensor<fmap_T> featureMapA2 = inQueueFmA2.AllocTensor<fmap_T>();
        LocalTensor<weight_T> weightB2 = inQueueWeB2.AllocTensor<weight_T>();

        InitConstValue(featureMapA2, {1, static_cast<uint16_t>(featureMapA2Size * sizeof(fmap_T) / 512), 0, 1});
        InitConstValue(weightB2, { 1, static_cast<uint16_t>(weightB2Size * sizeof(weight_T) / 512), 0, 2});

        inQueueFmA2.EnQue<fmap_T>(featureMapA2);
        inQueueWeB2.EnQue<weight_T>(weightB2);
        inQueueFmA1.FreeTensor(featureMapA1);
        inQueueWeB1.FreeTensor(weightB1);
    }
    __aicore__ inline void Compute()
    {
        LocalTensor<fmap_T> featureMapA2 = inQueueFmA2.DeQue<fmap_T>();
        LocalTensor<weight_T> weightB2 = inQueueWeB2.DeQue<weight_T>();
        LocalTensor<dstCO1_T> dstCO1 = outQueueCO1.AllocTensor<dstCO1_T>();
        LocalTensor<dstCO1_T> biasA1 = inQueueBiasA1.DeQue<dstCO1_T>();
        Mmad(dstCO1, featureMapA2, weightB2, biasA1, { m, n, k, true, 0, false, false, false });

        outQueueCO1.EnQue<dstCO1_T>(dstCO1);
        inQueueFmA2.FreeTensor(featureMapA2);
        inQueueWeB2.FreeTensor(weightB2);
        inQueueBiasA1.FreeTensor(biasA1);
    }
    __aicore__ inline void CopyOut()
    {
        LocalTensor<dstCO1_T> dstCO1 = outQueueCO1.DeQue<dstCO1_T>();
        FixpipeParamsV220 fixpipeParams;
        fixpipeParams.nSize = coutBlocks * 16;
        fixpipeParams.mSize = howo;
        fixpipeParams.srcStride = howo;
        fixpipeParams.dstStride = howo * BLOCK_CUBE * sizeof(dst_T) / ONE_BLK_SIZE;
        fixpipeParams.quantPre = deqMode;
        Fixpipe<dst_T, dstCO1_T, CFG_NZ>(dstGlobal, dstCO1, fixpipeParams);
        outQueueCO1.FreeTensor(dstCO1);
    }

private:
    TPipe pipe;
    // feature map queue
    TQue<QuePosition::A1, 1> inQueueFmA1;
    TQue<QuePosition::A2, 1> inQueueFmA2;
    // weight queue
    TQue<QuePosition::B1, 1> inQueueWeB1;
    TQue<QuePosition::B2, 1> inQueueWeB2;
    // bias queue
    TQue<QuePosition::A1, 1> inQueueBiasA1;
    // dst queue
    TQue<QuePosition::CO1, 1> outQueueCO1;

    GlobalTensor<fmap_T> fmGlobal;
    GlobalTensor<weight_T> weGlobal;
    GlobalTensor<dst_T> dstGlobal;
    GlobalTensor<dstCO1_T> biasGlobal;

    uint16_t channelSize = 32;
    uint16_t H = 4, W = 4;
    uint8_t Kh = 2, Kw = 2;
    uint16_t Cout = 16;
    uint16_t C0, C1;
    uint8_t dilationH = 2, dilationW = 2;
    uint16_t coutBlocks, ho, wo, howo, howoRound;
    uint32_t featureMapA1Size, weightA1Size, featureMapA2Size, weightB2Size, biasSize, dstSize, dstCO1Size;
    uint16_t m, k, n;
    uint8_t fmRepeat, weRepeat;
    QuantMode_t deqMode = QuantMode_t::F322F16;
};
} // namespace AscendC

extern "C" __global__ __aicore__ void cube_mmad_simple_kernel(__gm__ uint8_t *fmGm, __gm__ uint8_t *weGm,
    __gm__ uint8_t *biasGm, __gm__ uint8_t *dstGm)
{
    AscendC::KernelCubeMmad<dst_type, fmap_type, weight_type, dstCO1_type> op;
    op.Init(fmGm, weGm, biasGm, dstGm);
    op.Process();
}
搜索结果
找到“0”个结果

当前产品无相关内容

未找到相关内容,请尝试其他搜索词