下载
中文
注册

Sort

函数功能

排序函数,按照数值大小进行降序排序。一次迭代可以完成32个数的排序,数据需要按如下描述结构进行保存:

  • Atlas A2训练系列产品/Atlas 800I A2推理产品:排序好的score与其对应的index一起以(score, index)的结构存储在 dstLocal中。不论 score 为 half 还是 float 类型,dstLocal 中的(score, index)结构总是占据8 Bytes空间。如下所示:
    • 当score为float,index为uint32类型时,计算结果中index存储在高4Bytes,score存储在低4Bytes。

    • 当score为half,index为uint32类型时,计算结果中index存储在高4Bytes,score存储在低2Bytes, 中间的2Bytes保留。

  • Atlas 推理系列产品:输入输出数据均为Region Proposal,具体请参见ProposalConcat中的Region Proposal说明。

函数原型

1
2
template <typename T, bool isFullSort>
__aicore__ inline void Sort(const LocalTensor<T> &dstLocal, const LocalTensor<T> &concatLocal, const LocalTensor<uint32_t> &indexLocal, LocalTensor<T> &tmpLocal, const int32_t repeatTimes)

参数说明

表1 模板参数说明

接口

功能

T

操作数的数据类型。

isFullSort

是否开启全排序模式。全排序模式指将全部输入降序排序,非全排序模式下,排序成每16个或32个有序,参考repeatTimes说明。

表2 参数说明

参数名称

输入/输出

含义

dstLocal

输出

目的操作数。

类型为LocalTensor,支持的TPosition为VECIN/VECCALC/VECOUT。

Atlas A2训练系列产品/Atlas 800I A2推理产品,支持的数据类型为:half/float

Atlas推理系列产品AI Core,支持的数据类型为:half/float

concatLocal

输入

源操作数。

类型为LocalTensor,支持的TPosition为VECIN/VECCALC/VECOUT。

此源操作数的数据类型需要与目的操作数保持一致。

Atlas A2训练系列产品/Atlas 800I A2推理产品,支持的数据类型为:half/float

Atlas推理系列产品AI Core,支持的数据类型为:half/float

indexLocal

输入

源操作数。

类型为LocalTensor,支持的TPosition为VECIN/VECCALC/VECOUT。

此源操作数固定为uint32_t数据类型。

tmpLocal

输入

临时空间。接口内部复杂计算时用于存储中间变量,由开发者提供。数据类型与源操作数保持一致。

类型为LocalTensor,支持的TPosition为VECIN/VECCALC/VECOUT。

Atlas A2训练系列产品/Atlas 800I A2推理产品,支持的数据类型为:half/float

Atlas推理系列产品AI Core,支持的数据类型为:half/float

repeatTimes

输入

重复迭代次数,int32_t类型。

  • Atlas A2训练系列产品/Atlas 800I A2推理产品:每次迭代完成32个元素的排序,下次迭代concatLocal和indexLocal各跳过32个elements,dstLocal跳过32*8 Byte空间。取值范围:repeatTimes∈[0,255]。
  • Atlas 推理系列产品:每次迭代完成16个region proposal的排序,下次迭代concatLocal和dstLocal各跳过16个region proposal。取值范围:repeatTimes∈[0,255]。

返回值

支持的型号

Atlas A2训练系列产品/Atlas 800I A2推理产品

Atlas推理系列产品AI Core

约束说明

  • 当存在score[i]与score[j]相同时,如果i>j,则score[j]将首先被选出来,排在前面,即index的顺序与输入顺序一致。
  • 非全排序模式下,每次迭代内的数据会进行排序,不同迭代间的数据不会进行排序。
  • 操作数地址偏移对齐要求请参见通用约束

调用示例

  • 处理128个half类型数据。

    该样例适用于:

    Atlas A2训练系列产品/Atlas 800I A2推理产品

    #include "kernel_operator.h"
    
    namespace AscendC {
    template <typename T>
    class FullSort {
    public:
        __aicore__ inline FullSort() {}
        __aicore__ inline void Init(__gm__ uint8_t* srcValueGm, __gm__ uint8_t* srcIndexGm, __gm__ uint8_t* dstValueGm, __gm__ uint8_t* dstIndexGm)
        {
            concatRepeatTimes = m_elementCount / 16;
            inBufferSize = m_elementCount * sizeof(uint32_t);
            outBufferSize = m_elementCount * sizeof(uint32_t);
            calcBufferSize = m_elementCount * 8;
            tmpBufferSize = m_elementCount * 8;
            sortedLocalSize = m_elementCount * 4;
            sortRepeatTimes = m_elementCount / 32;
            extractRepeatTimes = m_elementCount / 32;
            sortTmpLocalSize = m_elementCount * 4;
            m_valueGlobal.SetGlobalBuffer((__gm__ T*)srcValueGm);
            m_indexGlobal.SetGlobalBuffer((__gm__ uint32_t*)srcIndexGm);
            m_dstValueGlobal.SetGlobalBuffer((__gm__ T*)dstValueGm);
            m_dstIndexGlobal.SetGlobalBuffer((__gm__ uint32_t*)dstIndexGm);
            m_pipe.InitBuffer(m_queIn, 2, inBufferSize);
            m_pipe.InitBuffer(m_queOut, 2, outBufferSize);
            m_pipe.InitBuffer(m_queCalc, 1, calcBufferSize*sizeof(T));
            m_pipe.InitBuffer(m_queTmp, 2, tmpBufferSize*sizeof(T));
        }
        __aicore__ inline void Process()
        {
            CopyIn();
            Compute();
            CopyOut();
        }
    private:
        __aicore__ inline void CopyIn()
        {
            LocalTensor<T> valueLocal = m_queIn.AllocTensor<T>();
            DataCopy(valueLocal, m_valueGlobal, m_elementCount);
            m_queIn.EnQue(valueLocal);
            LocalTensor<uint32_t> indexLocal = m_queIn.AllocTensor<uint32_t>();
            DataCopy(indexLocal, m_indexGlobal, m_elementCount);
            m_queIn.EnQue(indexLocal);
        }
        __aicore__ inline void Compute()
        {
            LocalTensor<T> valueLocal = m_queIn.DeQue<T>();
            LocalTensor<uint32_t> indexLocal = m_queIn.DeQue<uint32_t>();
            LocalTensor<T> sortedLocal = m_queCalc.AllocTensor<T>();
            LocalTensor<T> concatTmpLocal = m_queTmp.AllocTensor<T>();
            LocalTensor<T> sortTmpLocal = m_queTmp.AllocTensor<T>();
            LocalTensor<T> dstValueLocal = m_queOut.AllocTensor<T>();
            LocalTensor<uint32_t> dstIndexLocal = m_queOut.AllocTensor<uint32_t>();
            LocalTensor<T> concatLocal;
    
            Concat(concatLocal, valueLocal, concatTmpLocal, concatRepeatTimes);
            Sort<T, true>(sortedLocal, concatLocal, indexLocal, sortTmpLocal, sortRepeatTimes);
            Extract(dstValueLocal, dstIndexLocal, sortedLocal, extractRepeatTimes);
    
            m_queTmp.FreeTensor(concatTmpLocal);
            m_queTmp.FreeTensor(sortTmpLocal);
            m_queIn.FreeTensor(valueLocal);
            m_queIn.FreeTensor(indexLocal);
            m_queCalc.FreeTensor(sortedLocal);
            m_queOut.EnQue(dstValueLocal);
            m_queOut.EnQue(dstIndexLocal);
    
        }
        __aicore__ inline void CopyOut()
        {
            LocalTensor<T> dstValueLocal = m_queOut.DeQue<T>();
            LocalTensor<uint32_t> dstIndexLocal = m_queOut.DeQue<uint32_t>();
            DataCopy(m_dstValueGlobal, dstValueLocal, m_elementCount);
            DataCopy(m_dstIndexGlobal, dstIndexLocal, m_elementCount);
            m_queOut.FreeTensor(dstValueLocal);
            m_queOut.FreeTensor(dstIndexLocal);
        }
    private:
        TPipe m_pipe;
        TQue<QuePosition::VECIN, 2> m_queIn;
        TQue<QuePosition::VECOUT, 2> m_queOut;
        TQue<QuePosition::VECIN, 2> m_queTmp;
        TQue<QuePosition::VECIN, 1> m_queCalc;
        GlobalTensor<T> m_valueGlobal;
        GlobalTensor<uint32_t> m_indexGlobal;
        GlobalTensor<T> m_dstValueGlobal;
        GlobalTensor<uint32_t> m_dstIndexGlobal;
        uint32_t m_elementCount = 128;
        uint32_t concatRepeatTimes;
        uint32_t inBufferSize;
        uint32_t outBufferSize;
        uint32_t calcBufferSize;
        uint32_t tmpBufferSize;
        uint32_t sortedLocalSize;
        uint32_t sortTmpLocalSize;
        uint32_t sortRepeatTimes;
        uint32_t extractRepeatTimes;
    
    }; // class FullSort
    } // namespace AscendC
    
    extern "C" __global__ __aicore__ void FullSort(__gm__ uint8_t* src0Gm, __gm__ uint8_t* src1Gm, __gm__ uint8_t* dst0Gm, __gm__ uint8_t* dst1Gm)
    {
        AscendC::FullSort<half> op;
        op.Init(src0Gm, src1Gm, dst0Gm, dst1Gm);
        op.Process();
    }
    示例结果
    输入数据(srcValueGm): 128个float类型数据
    [31 30 29 ... 2 1 0
     63 62 61 ... 34 33 32
     95 94 93 ... 66 65 64
     127 126 125 ... 98 97 96]
    输入数据(srcIndexGm):
    [31 30 29 ... 2 1 0
     63 62 61 ... 34 33 32
     95 94 93 ... 66 65 64
     127 126 125 ... 98 97 96]
    输出数据(dstValueGm):
    [127 126 125 ... 2 1 0]
    输出数据(dstIndexGm):
    [127 126 125 ... 2 1 0]
  • 处理64个half类型数据。

    该样例适用于:

    Atlas 推理系列产品
    #include "kernel_operator.h"
    
    namespace AscendC {
    template <typename T>
    class FullSort {
    public:
        __aicore__ inline FullSort() {}
        __aicore__ inline void Init(__gm__ uint8_t* srcValueGm, __gm__ uint8_t* srcIndexGm, __gm__ uint8_t* dstValueGm, __gm__ uint8_t* dstIndexGm)
        {
            concatRepeatTimes = m_elementCount / 16;
            inBufferSize = m_elementCount * sizeof(uint32_t);
            outBufferSize = m_elementCount * sizeof(uint32_t);
            calcBufferSize = m_elementCount * 8;
            tmpBufferSize = m_elementCount * 8;
            sortedLocalSize = m_elementCount * 8 * sizeof(T);
            sortRepeatTimes = m_elementCount / 16;
            extractRepeatTimes = m_elementCount / 16;
            sortTmpLocalSize = m_elementCount * 8 * sizeof(T);
            m_valueGlobal.SetGlobalBuffer((__gm__ T*)srcValueGm);
            m_indexGlobal.SetGlobalBuffer((__gm__ uint32_t*)srcIndexGm);
            m_dstValueGlobal.SetGlobalBuffer((__gm__ T*)dstValueGm);
            m_dstIndexGlobal.SetGlobalBuffer((__gm__ uint32_t*)dstIndexGm);
            m_pipe.InitBuffer(m_queIn, 2, inBufferSize);
            m_pipe.InitBuffer(m_queOut, 2, outBufferSize);
            m_pipe.InitBuffer(m_queCalc, 1, calcBufferSize*sizeof(T));
            m_pipe.InitBuffer(m_queTmp, 2, tmpBufferSize*sizeof(T));
        }
        __aicore__ inline void Process()
        {
            CopyIn();
            Compute();
            CopyOut();
        }
    private:
        __aicore__ inline void CopyIn()
        {
            LocalTensor<T> valueLocal = m_queIn.AllocTensor<T>();
            DataCopy(valueLocal, m_valueGlobal, m_elementCount);
            m_queIn.EnQue(valueLocal);
    
            LocalTensor<uint32_t> indexLocal = m_queIn.AllocTensor<uint32_t>();
            DataCopy(indexLocal, m_indexGlobal, m_elementCount);
            m_queIn.EnQue(indexLocal);
        }
        __aicore__ inline void Compute()
        {
            LocalTensor<T> valueLocal = m_queIn.DeQue<T>();
            LocalTensor<uint32_t> indexLocal = m_queIn.DeQue<uint32_t>();
            LocalTensor<T> sortedLocal = m_queCalc.AllocTensor<T>();
            LocalTensor<T> concatTmpLocal = m_queTmp.AllocTensor<T>();
            LocalTensor<T> sortTmpLocal = m_queTmp.AllocTensor<T>();
            LocalTensor<T> dstValueLocal = m_queOut.AllocTensor<T>();
            LocalTensor<uint32_t> dstIndexLocal = m_queOut.AllocTensor<uint32_t>();
            LocalTensor<T> concatLocal;
    
            Concat(concatLocal, valueLocal, concatTmpLocal, concatRepeatTimes);
            Sort<T, true>(sortedLocal, concatLocal, indexLocal, sortTmpLocal, sortRepeatTimes);
            Extract(dstValueLocal, dstIndexLocal, sortedLocal, extractRepeatTimes);
    
            m_queTmp.FreeTensor(concatTmpLocal);
            m_queTmp.FreeTensor(sortTmpLocal);
            m_queIn.FreeTensor(valueLocal);
            m_queIn.FreeTensor(indexLocal);
            m_queCalc.FreeTensor(sortedLocal);
            m_queOut.EnQue(dstValueLocal);
            m_queOut.EnQue(dstIndexLocal);
    
        }
        __aicore__ inline void CopyOut()
        {
            LocalTensor<T> dstValueLocal = m_queOut.DeQue<T>();
            LocalTensor<uint32_t> dstIndexLocal = m_queOut.DeQue<uint32_t>();
            DataCopy(m_dstValueGlobal, dstValueLocal, m_elementCount);
            DataCopy(m_dstIndexGlobal, dstIndexLocal, m_elementCount);
            m_queOut.FreeTensor(dstValueLocal);
            m_queOut.FreeTensor(dstIndexLocal);
        }
    private:
        TPipe m_pipe;
        TQue<QuePosition::VECIN, 2> m_queIn;
        TQue<QuePosition::VECOUT, 2> m_queOut;
        TQue<QuePosition::VECIN, 2> m_queTmp;
        TQue<QuePosition::VECIN, 1> m_queCalc;
        GlobalTensor<T> m_valueGlobal;
        GlobalTensor<uint32_t> m_indexGlobal;
        GlobalTensor<T> m_dstValueGlobal;
        GlobalTensor<uint32_t> m_dstIndexGlobal;
        uint32_t m_elementCount = 64;
        uint32_t concatRepeatTimes;
        uint32_t inBufferSize;
        uint32_t outBufferSize;
        uint32_t calcBufferSize;
        uint32_t tmpBufferSize;
        uint32_t sortedLocalSize;
        uint32_t sortTmpLocalSize;
        uint32_t sortRepeatTimes;
        uint32_t extractRepeatTimes;
    
    }; // class FullSort
    } // namespace AscendC
    
    extern "C" __global__ __aicore__ void FullSort(__gm__ uint8_t* src0Gm, __gm__ uint8_t* src1Gm, __gm__ uint8_t* dst0Gm, __gm__ uint8_t* dst1Gm)
    {
        AscendC::FullSort<half> op;
        op.Init(src0Gm, src1Gm, dst0Gm, dst1Gm);
        op.Process();
    }
    示例结果
    输入数据(srcValueGm): 128个float类型数据
    [15 14 13 ... 2 1 0
     31 30 29 ... 18 17 16
     47 46 45 ... 34 33 32
     63 62 61 ... 50 49 48]
    输入数据(srcIndexGm):
    [15 14 13 ... 2 1 0
     31 30 29 ... 18 17 16
     47 46 45 ... 34 33 32
     63 62 61 ... 50 49 48]
    输出数据(dstValueGm):
    [63 62 61 ... 2 1 0]
    输出数据(dstIndexGm):
    [63 62 61 ... 2 1 0]