下载
中文
注册

save_quant_retrain_model

功能说明

量化感知训练接口,根据用户最终的重训练好的模型,插入AscendQuant、AscendDequant等算子,生成最终fake quant仿真模型和deploy部署模型。

约束说明

无。

函数原型

save_quant_retrain_model(retrained_model_file, retrained_weights_file, save_type, save_path, scale_offset_record_file = None, config_file = None)

参数说明

参数名

输入/返回值

含义

使用限制

retrained_model_file

输入

用户重训练好的Caffe模型的定义文件,格式为.prototxt。

数据类型:string

使用约束:retrained_model_file中包含的用于推理的层,LayerParameter设置满足推理要求,比如BatchNorm层的use_global_stats必须设置为1。

retrained_weights_file

输入

用户重训练好的Caffe模型的权重文件,格式为.caffemodel。

数据类型:string

save_type

输入

保存模型的类型:

  • Fakequant表明存储精度仿真模型。
  • Deploy表示存储可在昇腾AI处理器做推理的部署模型。
  • Both表示两种模型都进行存储。

数据类型:string

save_path

输入

模型存放路径。

该路径需要包含模型名前缀,例如./quantized_model/*model

数据类型:string

scale_offset_record_file

输入

存储量化因子的文件。

数据类型:string。默认已初始化,传None

config_file

输入

量化配置文件。

数据类型:string。默认已初始化,传None

返回值说明

无。

函数输出

  • 精度仿真模型文件:一个模型定义文件,一个模型权重文件,文件名中包含fake_quant;模型可在Caffe环境下做推理实现量化精度仿真。
  • 部署模型文件:一个模型定义文件,一个模型权重文件,文件名中包含deploy;模型经过ATC工具转换后可部署到昇腾AI处理器上。

调用示例

1
2
3
4
5
6
from amct_caffe import amct
retrained_model_file =  './pre_model/retrained_resnet50.prototxt'
retrained_weights_file = './pre_model/resnet50_solver_iter_35000.caffemodel'
scale_offset_record_file = './record.txt'
# 插入API,将重训练的模型保存为prototxt模型文件以及caffemodel权重文件,在./result中生成四个文件:model_fake_quant_model.prototxt,model_fake_quant_weights.caffemodel,model_deploy_model.prototxt,model_deploy_weights.prototxt
amct.save_quant_retrain_model(retrained_model_file, retrained_weights_file, 'Both', './result/model', scale_offset_record_file, config_json_file)