下载
中文
注册

save_distill_model

功能说明

蒸馏接口,根据用户最终的蒸馏好的模型,生成最终量化精度仿真模型以及量化部署模型。

函数原型

save_distill_model(model, save_path, input_data, record_file=None, input_names=None, output_names=None, dynamic_axes=None)

参数说明

参数名

输入/返回值

含义

使用限制

model

输入

已进行蒸馏后的量化模型。

数据类型:torch.nn.module

save_path

输入

蒸馏后的量化模型存放路径。

该路径需要包含模型名前缀,例如./quantized_model/*model。

数据类型:string

input_data

输入

模型的输入数据。一个torch.tensor会被等价为tuple(torch.tensor)

数据类型:tuple

record_file

输入

量化因子记录文件路径及名称。

默认值:None

数据类型:string

使用约束:传入值为None的情况下量化因子记录文件存放在amct_log文件夹中。

input_names

输入

模型输入节点的名称,用于在保存的量化onnx模型中显示。

默认值:None

数据类型:list(string)

output_names

输入

模型输出节点的名称,用于在保存的量化onnx模型中显示。

默认值:None

数据类型:list(string)

dynamic_axes

输入

对模型输入输出动态轴的指定,例如对于输入inputs(NCHW),N、H、W为不确定大小,输出outputs(NL),N为不确定大小,则指定形式为:{"inputs": [0,2,3], "outputs": [0]},其中0,2,3分别表示N,H,W所在位置的索引。

默认值:None

数据类型:dict<string, dict<python:int, string>> or dict<string, list(int)>

返回值说明

无。

函数输出

  • 精度仿真模型文件:ONNX格式的模型文件,模型名中包含fake_quant,可以在ONNX Runtime环境进行精度仿真。
  • 部署模型文件:ONNX格式的模型文件,模型名中包含deploy,经过ATC转换工具转换后可部署到在昇腾AI处理器

重新执行蒸馏时,该接口输出的上述文件将会被覆盖。

调用示例

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
import amct_pytorch as amct
# 建立待进行蒸馏量化的网络图结构
model = build_model()
model.load_state_dict(torch.load(state_dict_path))
input_data = tuple([torch.randn(input_shape)])
 
# 插入蒸馏API,将蒸馏的模型存为onnx文件
amct.save_distill_model(
               model, 
               "./model/distilled"
               input_data,
               record_file="./results/records.txt"
               input_names=['input'],
               output_names=['output'],
               dynamic_axes={'input':{0: 'batch_size'},
                             'output':{0: 'batch_size'}})