下载
中文
注册

aclnnClampMaxTensor&aclnnInplaceClampMaxTensor

支持的产品型号

  • Atlas 训练系列产品。
  • Atlas A2训练系列产品/Atlas 800I A2推理产品。

接口原型

  • aclnnClampMaxTensor和aclnnInplaceClampMaxTensor实现相同的功能,使用区别如下,请根据自身实际场景选择合适的算子。

    • aclnnClampMaxTensor:需新建一个输出张量对象存储计算结果。
    • aclnnInplaceClampMaxTensor:无需新建输出张量对象,直接在输入张量的内存中存储计算结果。
  • 每个算子分为两段式接口,必须先调用“aclnnClampMaxTensorGetWorkspaceSize”或者“aclnnInplaceClampMaxTensorGetWorkspaceSize”接口获取计算所需workspace大小以及包含了算子计算流程的执行器,再调用“aclnnClampMaxTensor”或者“aclnnInplaceClampMaxTensor”接口执行计算。

    • aclnnStatus aclnnClampMaxTensorGetWorkspaceSize(const aclTensor* self, const aclTensor* max, aclTensor* out, uint64_t* workspaceSize, aclOpExecutor** executor)
    • aclnnStatus aclnnClampMaxTensor(void* workspace, uint64_t workspaceSize, aclOpExecutor* executor, aclrtStream stream)
    • aclnnStatus aclnnInplaceClampMaxTensorGetWorkspaceSize(aclTensor* selfRef, const aclTensor* max, uint64_t* workspaceSize, aclOpExecutor** executor)
    • aclnnStatus aclnnInplaceClampMaxTensor(void* workspace, uint64_t workspaceSize, aclOpExecutor* executor, aclrtStream stream)

功能描述

  • 算子功能:将输入的所有元素限制在[-inf, max]范围内。

  • 计算公式:

    outi=min(selfi,maxi){out}_{i} = min({{self}_{i}},{max}_{i})

aclnnClampMaxTensorGetWorkspaceSize

  • 参数说明:

    • self(aclTensor*, 计算输入):输入tensor,数据类型支持FLOAT16、FLOAT、DOUBLE、INT8、UINT8、INT16、INT32、INT64、BFLOAT16(仅Atlas A2训练系列产品/Atlas 800I A2推理产品支持),且数据类型需要与max的数据类型需满足数据类型推导规则(参见互推导关系)。shape需要与max满足broadcast关系,支持非连续的Tensor数据格式支持ND。
    • max(aclTensor*, 计算输入):输入上限值tensor,数据类型支持FLOAT16、FLOAT、DOUBLE、INT8、UINT8、INT16、INT32、INT64、BFLOAT16(仅Atlas A2训练系列产品/Atlas 800I A2推理产品支持),且数据类型需要与self的数据类型需满足数据类型推导规则(参见互推导关系)。shape需要与self满足broadcast关系,支持非连续的Tensor数据格式支持ND。
    • out(aclTensor*, 计算输出):输出tensor,数据类型支持FLOAT16、FLOAT、DOUBLE、INT8、UINT8、INT16、INT32、INT64、BFLOAT16(仅Atlas A2训练系列产品/Atlas 800I A2推理产品支持),且数据类型需要是self与max推导之后可转换的数据类型,shape需要是self与max broadcast之后的shape,支持非连续的Tensor数据格式支持ND。
    • workspaceSize(uint64_t*, 出参):返回需要在Device侧申请的workspace大小。
    • executor(aclOpExecutor**, 出参):返回op执行器,包含了算子计算流程。
  • 返回值:

    aclnnStatus:返回状态码,具体参见aclnn返回码

    161001 (ACLNN_ERR_PARAM_NULLPTR): 1. 传入的self、max或out为空指针。
    161002 (ACLNN_ERR_PARAM_INVALID): 1. self与max推导后的数据类型不在支持范围内。
                                      2. self与max的shape不满足broadcast关系,或broadcast后的shape与输出out的shape不一致。
                                      3. self与max类型推导失败,或推导类型无法转为out的数据类型。
                                      4. self、max或out的维度超过8维。

aclnnClampMaxTensor

  • 参数说明:

    • workspace(void*, 入参):在Device侧申请的workspace内存地址。
    • workspaceSize(uint64_t, 入参):在Device侧申请的workspace大小,由第一段接口aclnnClampMaxTensorGetWorkspaceSize获取。
    • executor(aclOpExecutor*, 入参):op执行器,包含了算子计算流程。
    • stream(aclrtStream, 入参):指定执行任务的AscendCL Stream流。
  • 返回值:

    aclnnStatus:返回状态码,具体参见aclnn返回码

aclnnInplaceClampMaxTensorGetWorkspaceSize

  • 参数说明:

    • selfRef(aclTensor*, 计算输入|计算输出):输入输出tensor,即公式中的self与out。数据类型支持FLOAT16、FLOAT、DOUBLE、INT8、UINT8、INT16、INT32、INT64、BFLOAT16(仅Atlas A2训练系列产品/Atlas 800I A2推理产品支持),且数据类型需要与max的数据类型需满足数据类型推导规则(参见互推导关系)。shape需要与max满足broadcast关系,支持非连续的Tensor数据格式支持ND。
    • max(aclTensor*, 计算输入):输入上限值tensor,数据类型支持FLOAT16、FLOAT、DOUBLE、INT8、UINT8、INT16、INT32、INT64、BFLOAT16(仅Atlas A2训练系列产品/Atlas 800I A2推理产品支持),且数据类型需要与selfRef的数据类型需满足数据类型推导规则(参见互推导关系)。shape需要与selfRef满足broadcast关系,支持非连续的Tensor数据格式支持ND。
    • workspaceSize(uint64_t*, 出参):返回需要在Device侧申请的workspace大小。
    • executor(aclOpExecutor**, 出参):返回op执行器,包含了算子计算流程。
  • 返回值:

    aclnnStatus:返回状态码,具体参见aclnn返回码

    161001 (ACLNN_ERR_PARAM_NULLPTR): 1. 传入的selfRef或max为空指针。
    161002 (ACLNN_ERR_PARAM_INVALID): 1. selfRef与max推导后的数据类型不在支持范围内。
                                      2. selfRef与max的shape不满足broadcast  关系。
                                      3. selfRef与max类型推导失败。
                                      4. selfRef或max的维度超过8维。

aclnnInplaceClampMaxTensor

  • 参数说明:

    • workspace(void*, 入参):在Device侧申请的workspace内存地址。
    • workspaceSize(uint64_t, 入参):在Device侧申请的workspace大小,由第一段接口aclnnInplaceClampMaxTensorGetWorkspaceSize获取。
    • executor(aclOpExecutor*, 入参):op执行器,包含了算子计算流程。
    • stream(aclrtStream, 入参):指定执行任务的AscendCL Stream流。
  • 返回值:

    aclnnStatus:返回状态码,具体参见aclnn返回码

约束与限制

调用示例

示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例

aclnnClampMaxTensor调用示例:

#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_clamp.h"

#define CHECK_RET(cond, return_expr) \
  do {                               \
    if (!(cond)) {                   \
      return_expr;                   \
    }                                \
  } while (0)

#define LOG_PRINT(message, ...)     \
  do {                              \
    printf(message, ##__VA_ARGS__); \
  } while (0)

int64_t GetShapeSize(const std::vector<int64_t>& shape) {
  int64_t shapeSize = 1;
  for (auto i : shape) {
    shapeSize *= i;
  }
  return shapeSize;
}

int Init(int32_t deviceId, aclrtStream* stream) {
  // 固定写法,AscendCL初始化
  auto ret = aclInit(nullptr);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
  ret = aclrtSetDevice(deviceId);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
  ret = aclrtCreateStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
  return 0;
}

template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
                    aclDataType dataType, aclTensor** tensor) {
  auto size = GetShapeSize(shape) * sizeof(T);
  // 调用aclrtMalloc申请device侧内存
  auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
  // 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
  ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);

  // 计算连续tensor的strides
  std::vector<int64_t> strides(shape.size(), 1);
  for (int64_t i = shape.size() - 2; i >= 0; i--) {
    strides[i] = shape[i + 1] * strides[i + 1];
  }

  // 调用aclCreateTensor接口创建aclTensor
  *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
                            shape.data(), shape.size(), *deviceAddr);
  return 0;
}

int main() {
  // 1. (固定写法)device/stream初始化,参考AscendCL对外接口列表
  // 根据自己的实际device填写deviceId
  int32_t deviceId = 0;
  aclrtStream stream;
  auto ret = Init(deviceId, &stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);

  // 2. 构造输入与输出,需要根据API的接口自定义构造
  std::vector<int64_t> selfShape = {4, 2};
  std::vector<int64_t> maxShape = {4, 2};
  std::vector<int64_t> outShape = {4, 2};
  void* selfDeviceAddr = nullptr;
  void* maxDeviceAddr = nullptr;
  void* outDeviceAddr = nullptr;
  aclTensor* self = nullptr;
  aclTensor* max = nullptr;
  aclTensor* out = nullptr;
  std::vector<float> selfHostData = {0, 1, 2, 3, 4, 5, 6, 7};
  std::vector<float> maxHostData = {1, 1, 1, 2, 2, 2, 3, 3};
  std::vector<float> outHostData(8, 0);
  // 创建self aclTensor
  ret = CreateAclTensor(selfHostData, selfShape, &selfDeviceAddr, aclDataType::ACL_FLOAT, &self);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建max aclTensor
  ret = CreateAclTensor(maxHostData, maxShape, &maxDeviceAddr, aclDataType::ACL_FLOAT, &max);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建out aclTensor
  ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT, &out);
  CHECK_RET(ret == ACL_SUCCESS, return ret);

  // 3. 调用CANN算子库API,需要修改为具体的Api名称
  uint64_t workspaceSize = 0;
  aclOpExecutor* executor;
  // 调用aclnnClampMaxTensor第一段接口
  ret = aclnnClampMaxTensorGetWorkspaceSize(self, max, out, &workspaceSize, &executor);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnClampMaxTensorGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
  // 根据第一段接口计算出的workspaceSize申请device内存
  void* workspaceAddr = nullptr;
  if (workspaceSize > 0) {
    ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
  }
  // 调用aclnnClampMaxTensor第二段接口
  ret = aclnnClampMaxTensor(workspaceAddr, workspaceSize, executor, stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnClampMaxTensor failed. ERROR: %d\n", ret); return ret);

  // 4. (固定写法)同步等待任务执行结束
  ret = aclrtSynchronizeStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);

  // 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
  auto size = GetShapeSize(outShape);
  std::vector<float> resultData(size, 0);
  ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), outDeviceAddr,
                    size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
  for (int64_t i = 0; i < size; i++) {
    LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]);
  }

  // 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
  aclDestroyTensor(self);
  aclDestroyTensor(max);
  aclDestroyTensor(out);

  // 7. 释放device资源,需要根据具体API的接口定义修改
  aclrtFree(selfDeviceAddr);
  aclrtFree(maxDeviceAddr);
  aclrtFree(outDeviceAddr);
  if (workspaceSize > 0) {
    aclrtFree(workspaceAddr);
  }
  aclrtDestroyStream(stream);
  aclrtResetDevice(deviceId);
  aclFinalize();
  return 0;
}

aclnnInplaceClampMaxTensor调用示例:

#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_clamp.h"

#define CHECK_RET(cond, return_expr) \
  do {                               \
    if (!(cond)) {                   \
      return_expr;                   \
    }                                \
  } while (0)

#define LOG_PRINT(message, ...)     \
  do {                              \
    printf(message, ##__VA_ARGS__); \
  } while (0)

int64_t GetShapeSize(const std::vector<int64_t>& shape) {
  int64_t shapeSize = 1;
  for (auto i : shape) {
    shapeSize *= i;
  }
  return shapeSize;
}

int Init(int32_t deviceId, aclrtStream* stream) {
  // 固定写法,AscendCL初始化
  auto ret = aclInit(nullptr);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
  ret = aclrtSetDevice(deviceId);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
  ret = aclrtCreateStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
  return 0;
}

template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
                    aclDataType dataType, aclTensor** tensor) {
  auto size = GetShapeSize(shape) * sizeof(T);
  // 调用aclrtMalloc申请device侧内存
  auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
  // 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
  ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);

  // 计算连续tensor的strides
  std::vector<int64_t> strides(shape.size(), 1);
  for (int64_t i = shape.size() - 2; i >= 0; i--) {
    strides[i] = shape[i + 1] * strides[i + 1];
  }

  // 调用aclCreateTensor接口创建aclTensor
  *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
                            shape.data(), shape.size(), *deviceAddr);
  return 0;
}

int main() {
  // 1. (固定写法)device/stream初始化,参考AscendCL对外接口列表
  // 根据自己的实际device填写deviceId
  int32_t deviceId = 0;
  aclrtStream stream;
  auto ret = Init(deviceId, &stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);

  // 2. 构造输入与输出,需要根据API的接口自定义构造
  std::vector<int64_t> selfShape = {4, 2};
  std::vector<int64_t> maxShape = {4, 2};
  void* selfDeviceAddr = nullptr;
  void* maxDeviceAddr = nullptr;
  aclTensor* self = nullptr;
  aclTensor* max = nullptr;
  std::vector<float> selfHostData = {0, 1, 2, 3, 4, 5, 6, 7};
  std::vector<float> maxHostData = {1, 1, 1, 2, 2, 2, 3, 3};
  // 创建self aclTensor
  ret = CreateAclTensor(selfHostData, selfShape, &selfDeviceAddr, aclDataType::ACL_FLOAT, &self);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建max aclTensor
  ret = CreateAclTensor(maxHostData, maxShape, &maxDeviceAddr, aclDataType::ACL_FLOAT, &max);
  CHECK_RET(ret == ACL_SUCCESS, return ret);

  // 3. 调用CANN算子库API,需要修改为具体的Api名称
  uint64_t workspaceSize = 0;
  aclOpExecutor* executor;
  // 调用aclnnInplaceClampMaxTensor第一段接口
  ret = aclnnInplaceClampMaxTensorGetWorkspaceSize(self, max, &workspaceSize, &executor);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnInplaceClampMaxTensorGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
  // 根据第一段接口计算出的workspaceSize申请device内存
  void* workspaceAddr = nullptr;
  if (workspaceSize > 0) {
    ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
  }
  // 调用aclnnInplaceClampMaxTensor第二段接口
  ret = aclnnInplaceClampMaxTensor(workspaceAddr, workspaceSize, executor, stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnInplaceClampMaxTensor failed. ERROR: %d\n", ret); return ret);

  // 4. (固定写法)同步等待任务执行结束
  ret = aclrtSynchronizeStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);

  // 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
  auto size = GetShapeSize(selfShape);
  std::vector<float> resultData(size, 0);
  ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), selfDeviceAddr,
                    size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
  for (int64_t i = 0; i < size; i++) {
    LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]);
  }

  // 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
  aclDestroyTensor(self);
  aclDestroyTensor(max);

  // 7. 释放device资源,需要根据具体API的接口定义修改
  aclrtFree(selfDeviceAddr);
  aclrtFree(maxDeviceAddr);
  if (workspaceSize > 0) {
    aclrtFree(workspaceAddr);
  }
  aclrtDestroyStream(stream);
  aclrtResetDevice(deviceId);
  aclFinalize();
  return 0;
}