下载
中文
注册

aclnnWeightQuantMatmulAllReduceAddRmsNorm&aclnnInplaceWeightQuantMatmulAllReduceAddRmsNorm

支持的产品型号

  • Atlas A2训练系列产品/Atlas 800I A2推理产品。

说明: 使用该接口时,请确保驱动固件包和CANN包都为配套的8.0.RC2版本或者配套的更高版本,否则将会引发报错,比如BUS ERROR等。

接口原型

  • aclnnWeightQuantMatmulAllReduceAddRmsNorm和aclnnInplaceWeightQuantMatmulAllReduceAddRmsNorm实现相同的功能,使用区别如下,请根据自身实际场景选择合适的算子。

    • aclnnWeightQuantMatmulAllReduceAddRmsNorm:需新建一个输出张量对象存储计算结果。
    • aclnnInplaceWeightQuantMatmulAllReduceAddRmsNorm:无需新建输出张量对象,直接在输入张量residual的内存中存储计算结果。

每个算子分为两段式接口,必须先调用“aclnnWeightQuantMatmulAllReduceAddRmsNormGetWorkspaceSize”或者“aclnnInplaceWeightQuantMatmulAllReduceAddRmsNormGetWorkspaceSize”接口获取计算所需workspace大小以及包含了算子计算流程的执行器,再调用“aclnnWeightQuantMatmulAllReduceAddRmsNorm”或者“aclnnInplaceWeightQuantMatmulAllReduceAddRmsNorm”接口执行计算。

  • aclnnStatus aclnnWeightQuantMatmulAllReduceAddRmsNormGetWorkspaceSize(const aclTensor *x1, const aclTensor *x2, const aclTensor *bias, const aclTensor *antiquantScale, const aclTensor *antiquantOffset, const aclTensor *residual, const aclTensor *gamma, double epsilon, const char* group, const char *reduceOp, int64_t commTurn, int64_t streamMode, int64_t antiquantGroupSize, const aclTensor *y, const aclTensor *normOut, uint64_t *workspaceSize, aclOpExecutor **executor)
  • aclnnStatus aclnnWeightQuantMatmulAllReduceAddRmsNorm(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, const aclrtStream stream)
  • aclnnStatus aclnnInplaceWeightQuantMatmulAllReduceAddRmsNormGetWorkspaceSize(const aclTensor *x1, const aclTensor *x2, const aclTensor *bias, const aclTensor *antiquantScale, const aclTensor *antiquantOffset, const aclTensor *residual, const aclTensor *gamma, double epsilon, const char* group, const char *reduceOp, int64_t commTurn, int64_t streamMode, int64_t antiquantGroupSize, const aclTensor *normOut, uint64_t *workspaceSize, aclOpExecutor **executor)
  • aclnnStatus aclnnInplaceWeightQuantMatmulAllReduceAddRmsNorm(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, const aclrtStream stream)

功能描述

  • 算子功能:完成mm + all_reduce + add + rms_norm计算。
  • 计算公式mm_out=allReduce(x1@(x2antiquantScale+antiquantOffset)+bias)mm\_out = allReduce(x1 @ (x2*antiquantScale + antiquantOffset) + bias) y=mm_out+residualy = mm\_out + residual normOut=yRMS(y)gamma,RMS(y)=1di=1dyi2+epsilonnormOut = \frac{y}{RMS(y)} * gamma, RMS(y) = \sqrt{\frac{1}{d} \sum_{i=1}^{d} y_{i}^{2} + epsilon}

aclnnWeightQuantMatmulAllReduceAddRmsNormGetWorkspaceSize

  • 参数说明:

    • x1(const aclTensor *, 计算输入):Device侧的aclTensor,mm左矩阵,维度可为2维或者3维。数据类型支持:BFLOAT16,FLOAT16。数据格式支持:ND。
    • x2(const aclTensor *, 计算输入):Device侧的2维aclTensor,mm右矩阵。数据类型支持:INT8、INT4。数据格式支持:ND。
    • bias(const aclTensor *, 计算输入):bias。维度为1维。数据类型支持:BFLOAT16,FLOAT16。数据格式支持:ND,可选,可为空。非空时shape和x2最后一维相等
    • antiquantScale(aclTensor*, 计算输入):antiquantScale,对x2进行伪量化计算的scale参数。数据类型支持:BFLOAT16,FLOAT16。数据格式支持:ND。per_tensor场景shape为[1],per_channel场景shape为[n] / [1,n],n为x2最后一维的大小。per_group场景shape为(ceil(k,antiquantGroupSize),n)。
    • antiquantOffset(aclTensor*, 计算输入):antiquantOffset,对x2进行伪量化计算的offset参数。数据类型支持:BFLOAT16,FLOAT16。数据格式支持:ND,可选,可为空。非空时shape,与antiquantScale一致。
    • residual(aclTensor*,计算输入):AddRmsNorm融合算子的残差输入,Device侧的三维aclTensor,数据类型支持:FLOAT16、BFLOAT16。数据格式支持:ND。不支持非连续tensor。inplace接口将该接口作为y的输出地址。
    • gamma(aclTensor*,计算输入):AddRmsNorm融合算子的RmsNorm计算输入,Device侧的一维aclTensor,数据类型支持:FLOAT16、BFLOAT16。数据格式支持:ND。不支持非连续tensor。
    • epsilon(double,计算输入):Host侧双精度,用于防止除0错误。默认值为1e-06
    • group(char*,计算输入):通信域名称。数据类型支持:string。通过Hccl提供的接口获取:extern HcclResult HcclGetCommName(HcclComm comm, char* commName); commName即为group。
    • reduceOp(char*,计算输入):reduce操作类型。数据类型支持:String。当前版本仅支持输入"sum"。
    • commTurn(int64_t,计算输入):Host侧的整型,通信数据切分数,即总数据量/单次通信量。数据类型支持:int64_t。当前版本仅支持输入0。
    • streamMode(int64_t,计算输入):Host侧的整型,acl流模式的枚举,当前只支持枚举值1,类型支持:int64_t。
    • antiquantGroupSize(int64_t,计算输入):伪量化per_group模式下,对x2进行反量化计算的groupSize输入。当不支持per_group时,传入0,支持时,传入值的范围为[32,min(k-1,INT_MAX)],且为32的倍数。k取值范围与matmul接口保持一致
    • y(aclTensor*,计算输出):Device侧的aclTensor,mm + all_reduce + add的结果。数据类型支持FLOAT16、BFLOAT16, 且数据类型同residual输入。
    • normOut(aclTensor*,计算输出):Device侧的aclTensor,mm + all_reduce + add + rms_norm的结果。数据类型支持FLOAT16、BFLOAT16, 且数据类型同residual输入。
    • workspaceSize(uint64_t*,出参):返回需要在Device侧申请的workspace大小。
    • executor(aclOpExecutor **,出参):返回op执行器,包含了算子计算流程。
  • 返回值:

    返回aclnnStatus状态码,具体参见aclnn返回码

aclnnWeightQuantMatmulAllReduceAddRmsNorm

  • 参数说明:

    • workspace(void*,入参):在Device侧申请的workspace内存地址。
    • workspaceSize(uint64_t,入参):在Device侧申请的workspace大小,由第一段接口aclnnWeightQuantMatmulAllReduceAddRmsNormGetWorkspaceSize。
    • executor(aclOpExecutor*,入参):op执行器,包含了算子计算流程。
    • stream(aclrtStream,入参):指定执行任务的AscendCL stream流。
  • 返回值:

    返回aclnnStatus状态码,具体参见aclnn返回码

aclnnInplaceWeightQuantMatmulAllReduceAddRmsNormGetWorkspaceSize

  • 参数说明:

    • x1(const aclTensor *, 计算输入):Device侧的aclTensor,mm左矩阵,维度可为2维或者3维。数据类型支持:BFLOAT16,FLOAT16。数据格式支持:ND。
    • x2(const aclTensor *, 计算输入):Device侧的2维aclTensor,mm右矩阵。数据类型支持:INT8、INT4。数据格式支持:ND。
    • bias(const aclTensor *, 计算输入):bias。维度为1维。数据类型支持:BFLOAT16,FLOAT16。数据格式支持:ND,可选,可为空。非空时shape和x2最后一维相等
    • antiquantScale(aclTensor*, 计算输入):antiquantScale,对x2进行伪量化计算的scale参数。数据类型支持:BFLOAT16,FLOAT16。数据格式支持:ND。per_tensor场景shape为[1],per_channel场景shape为[n] / [1,n],n为x2最后一维的大小。per_group场景shape为(ceil(k,antiquantGroupSize),n)。
    • antiquantOffset(aclTensor*, 计算输入):antiquantOffset,对x2进行伪量化计算的offset参数。数据类型支持:BFLOAT16,FLOAT16。数据格式支持:ND,可选,可为空。非空时shape,与antiquantScale一致。
    • residual(aclTensor*,计算输入):Device侧的三维aclTensor,数据类型支持:FLOAT16、BFLOAT16。数据格式支持:ND。不支持非连续tensor。
    • gamma(aclTensor*,计算输入):Device侧的一维aclTensor,数据类型支持:FLOAT16、BFLOAT16。数据格式支持:ND。不支持非连续tensor。
    • epsilon(double,计算输入):Host侧双精度,用于防止除0错误。默认值为1e-06
    • group(char*,计算输入):Host侧标识列组的字符串。通信域名称。数据类型支持:string。通过Hccl提供的接口获取:extern HcclResult HcclGetCommName(HcclComm comm, char* commName); commName即为group。
    • reduceOp(char*,计算输入):reduce操作类型。数据类型支持:String。当前版本仅支持输入"sum"。
    • commTurn(int64_t,计算输入):Host侧的整型,通信数据切分数,即总数据量/单次通信量。数据类型支持:int64_t。当前版本仅支持输入0。
    • streamMode(int64_t,计算输入):Host侧的整型,acl流模式的枚举,当前只支持枚举值1,类型支持:int64_t。
    • antiquantGroupSize(int64_t,计算输入):伪量化per_group模式下,对x2进行反量化计算的groupSize输入。当不支持per_group时,传入0,支持时,传入值的范围为[32,min(k-1,INT_MAX)],且为32的倍数。k取值范围与matmul接口保持一致
    • normOut(aclTensor*,计算输出):Device侧的aclTensor,mm + all_reduce + add + rms_norm的结果。数据类型支持FLOAT16、BFLOAT16, 且数据类型同residual输入。
    • workspaceSize(uint64_t*,出参):返回需要在Device侧申请的workspace大小。
    • executor(aclOpExecutor **,出参):返回op执行器,包含了算子计算流程。
  • 返回值:

    返回aclnnStatus状态码,具体参见aclnn返回码

aclnnInplaceWeightQuantMatmulAllReduceAddRmsNorm

  • 参数说明:

    • workspace(void*,入参):在Device侧申请的workspace内存地址。
    • workspaceSize(uint64_t,入参):在Device侧申请的workspace大小,由第一段接口aclnnInplaceWeightQuantMatmulAllReduceAddRmsNormGetWorkspaceSize。
    • executor(aclOpExecutor*,入参):op执行器,包含了算子计算流程。
    • stream(aclrtStream,入参):指定执行任务的AscendCL stream流。
  • 返回值:

    返回aclnnStatus状态码,具体参见aclnn返回码

约束与限制

  • 使用场景同融合算子aclnnWeightQuantMatmulAllReduce一致:增量场景不使能MC2,全量场景使能MC2
  • 输入x1可为2维或者3维,其维度为(b, s, k)或者(s, k)。x2必须是2维,其维度为(k, n),轴满足mm算子入参要求,k轴相等,k、n的范围为[1, 65535]。bias若非空,bias为1维,其维度为(n)。
  • 输入residual必须是3维,其维度为(b, s, n),当x1为两维时,residual的(b*s)等于x1的s。输入gamma必须是一维,其维度为(n)。
  • antiquantScale满足per-tensor场景shape为[1],per-channel场景shape为[1,n][n],per-group场景shape为[ceil(k,antiquantGroupSize),n]。antiquantOffset若非空,shape与antiquantScale一致。
  • 输出y和normOut的维度和数据类型同residual。bias若非空,shape大小与最后一维相等。
  • x2的数据类型需为int8或者int4,x1、bias(若支持)、residual、gamma、y、normOut计算输入的数据类型要一致。
  • 只支持x2矩阵转置/不转置,x1矩阵支持不转置场景。
  • antiquantGroupSize取值满足取值范围[32, min(k-1, INT_MAX)]且为32倍数。
  • epsilon取值满足取值范围(0,1)。
  • Atlas A2训练系列产品/Atlas 800I A2推理产品支持1、2、4、8卡,并且仅支持hccs链路all mesh组网。
  • Atlas A2训练系列产品/Atlas 800I A2推理产品支持(b*s)、n为0的空tensor,不支持k为0的空tensor。

调用示例

#include <iostream>
#include <vector>
#include <thread>
#include "aclnnop/aclnn_weight_quant_matmul_all_reduce_add_rms_norm.h"
#include "aclnnop/aclnn_inplace_weight_quant_matmul_all_reduce_add_rms_norm.h"

int ndev = 8;

#define CHECK_RET(cond, return_expr) \
  do {                               \
    if (!(cond)) {                   \
      return_expr;                   \
    }                                \
  } while (0)

#define LOG_PRINT(message, ...)     \
  do {                              \
    printf(message, ##__VA_ARGS__); \
  } while (0)

int64_t GetShapeSize(const std::vector<int64_t> &shape) {
    int64_t shapeSize = 1;
    for (auto i: shape) {
        shapeSize *= i;
    }
    return shapeSize;
}

template<typename T>
int CreateAclTensor(const std::vector<T> &hostData, const std::vector<int64_t> &shape, void **deviceAddr,
                    aclDataType dataType, aclTensor **tensor) {
    auto size = GetShapeSize(shape) * sizeof(T);
    // 调用aclrtMalloc申请device侧内存
    auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
    // 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
    ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
    // 计算连续tensor的strides
    std::vector<int64_t> strides(shape.size(), 1);
    for (int64_t i = shape.size() - 2; i >= 0; i--) {
        strides[i] = shape[i + 1] * strides[i + 1];
    }
    // 调用aclCreateTensor接口创建aclTensor
    *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
                              shape.data(), shape.size(), *deviceAddr);
    return 0;
}

struct Args {
    uint32_t rankId;
    HcclComm hcclComm;
    aclrtStream stream;
    aclrtContext context;
};

int launchOneThreadweightQuantmatmulAllReduceAddRmsNorm(Args &args) {
    int ret;
    ret = aclrtSetCurrentContext(args.context);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetCurrentContext failed. ERROR: %d\n", ret); return ret);
    char hcom_name[128];
    ret = HcclGetCommName(args.hcclComm, hcom_name);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] HcclGetCommName failed. ret = %d \n", ret); return -1);
    LOG_PRINT("[INFO] rank %d hcom: %s stream: %p, context : %p\n", args.rankId, hcom_name, args.stream,
              args.context);

    std::vector<int64_t> x1Shape = {32, 64};
    std::vector<int64_t> x2Shape = {64, 128};
    std::vector<int64_t> biasShape = {128};
    std::vector<int64_t> antiquantScaleShape = {128};
    std::vector<int64_t> antiquantOffsetShape = {128};
    std::vector<int64_t> x3Shape = {32, 128};
    std::vector<int64_t> residualShape = {1, 32, 128};
    std::vector<int64_t> gammaShape = {128};
    std::vector<int64_t> yShape = {1, 32, 128};
    std::vector<int64_t> normOutShape = {1, 32, 128};
    void *x1DeviceAddr = nullptr;
    void *x2DeviceAddr = nullptr;
    void *biasDeviceAddr = nullptr;
    void *antiquantScaleDeviceAddr = nullptr;
    void *antiquantOffsetDeviceAddr = nullptr;
    void *x3DeviceAddr = nullptr;
    void *residualDeviceAddr = nullptr;
    void *gammaDeviceAddr = nullptr;
    void *yDeviceAddr = nullptr;
    void *normOutDeviceAddr = nullptr;
    aclTensor *x1 = nullptr;
    aclTensor *x2 = nullptr;
    aclTensor *bias = nullptr;
    aclTensor *antiquantScale = nullptr;
    aclTensor *antiquantOffset = nullptr;
    aclTensor *x3 = nullptr;
    aclTensor *residual = nullptr;
    aclTensor *gamma = nullptr;
    aclTensor *y = nullptr;
    aclTensor *normOut = nullptr;

    int64_t commTurn = 0;
    int64_t streamMode = 1;
    double  epsilon = 0.000001;
    int64_t antiquantGroupSize = 0;
    uint64_t workspaceSize = 0;
    aclOpExecutor *executor;
    void *workspaceAddr = nullptr;

    long long x1ShapeSize = GetShapeSize(x1Shape);
    long long x2ShapeSize = GetShapeSize(x2Shape);
    long long biasShapeSize = GetShapeSize(biasShape);
    long long antiquantScaleShapeSize = GetShapeSize(antiquantScaleShape);
    long long antiquantOffsetShapeSize = GetShapeSize(antiquantOffsetShape);
    long long x3ShapeSize = GetShapeSize(x3Shape);
    long long residualShapeSize = GetShapeSize(residualShape);
    long long gammaShapeSize = GetShapeSize(gammaShape);
    long long yShapeSize = GetShapeSize(yShape);
    long long normOutShapeSize = GetShapeSize(normOutShape);
    std::vector<int16_t> x1HostData(x1ShapeSize, 0);
    std::vector<int8_t> x2HostData(x2ShapeSize, 0);
    std::vector<int16_t> biasHostData(biasShapeSize, 0);
    std::vector<int16_t> antiquantScaleHostData(antiquantScaleShapeSize, 0);
    std::vector<int16_t> antiquantOffsetHostData(antiquantOffsetShapeSize, 0);
    std::vector<int16_t> x3HostData(x3ShapeSize, 0);
    std::vector<int16_t> reisudalHostData(residualShapeSize, 0);
    std::vector<int16_t> gammaHostData(gammaShapeSize, 0);
    std::vector<int16_t> yHostData(yShapeSize, 0);
    std::vector<int16_t> normOutHostData(normOutShapeSize, 0);
    // 创建 tensor
    ret = CreateAclTensor(x1HostData, x1Shape, &x1DeviceAddr, aclDataType::ACL_FLOAT16, &x1);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    ret = CreateAclTensor(x2HostData, x2Shape, &x2DeviceAddr, aclDataType::ACL_INT8, &x2);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    ret = CreateAclTensor(biasHostData, biasShape, &biasDeviceAddr, aclDataType::ACL_FLOAT16, &bias);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    ret = CreateAclTensor(antiquantScaleHostData, antiquantScaleShape, &antiquantScaleDeviceAddr,
                          aclDataType::ACL_FLOAT16, &antiquantScale);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    ret = CreateAclTensor(antiquantOffsetHostData, antiquantOffsetShape, &antiquantOffsetDeviceAddr,
                          aclDataType::ACL_FLOAT16, &antiquantOffset);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    ret = CreateAclTensor(x3HostData, x3Shape, &x3DeviceAddr, aclDataType::ACL_FLOAT16, &x3);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    ret = CreateAclTensor(reisudalHostData, residualShape, &residualDeviceAddr, aclDataType::ACL_FLOAT16, &residual);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    ret = CreateAclTensor(gammaHostData, gammaShape, &gammaDeviceAddr, aclDataType::ACL_FLOAT16, &gamma);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    ret = CreateAclTensor(yHostData, yShape, &yDeviceAddr, aclDataType::ACL_FLOAT16, &y);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    ret = CreateAclTensor(normOutHostData, normOutShape, &normOutDeviceAddr, aclDataType::ACL_FLOAT16, &normOut);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    // 调用aclnnWeightQuantMatmulAllReduceAddRmsNorm示例
    // 调用第一段接口
    ret = aclnnWeightQuantMatmulAllReduceAddRmsNormGetWorkspaceSize(x1, x2, bias, antiquantScale, antiquantOffset,
                                                          residual, gamma, epsilon, hcom_name,
                                                          "sum", commTurn, streamMode, antiquantGroupSize, y, normOut,
                                                          &workspaceSize, &executor);
    CHECK_RET(ret == ACL_SUCCESS,
              LOG_PRINT("aclnnWeightQuantMatmulAllReduceAddRmsNormGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
    // 根据第一段接口计算出的workspaceSize申请device内存
    if (workspaceSize > 0) {
        ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
        CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
    }
    // 调用第二段接口
    ret = aclnnWeightQuantMatmulAllReduceAddRmsNorm(workspaceAddr, workspaceSize, executor, args.stream);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnWeightQuantMatmulAllReduceAddRmsNorm failed. ERROR: %d\n", ret); return ret);
    //(固定写法)同步等待任务执行结束
    ret = aclrtSynchronizeStreamWithTimeout(args.stream, 10000);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
    LOG_PRINT("device%d aclnnWeightQuantMatmulAllReduceAddRmsNorm execute success \n", args.rankId);
    // 释放device资源,需要根据具体API的接口定义修改

    // 调用aclnnInplaceWeightQuantMatmulAllReduceAddRmsNorm示例
    // 调用第一段接口
    ret = aclnnInplaceWeightQuantMatmulAllReduceAddRmsNormGetWorkspaceSize(x1, x2, bias, antiquantScale, antiquantOffset,
                                                          residual, gamma, epsilon, hcom_name,
                                                          "sum", commTurn, streamMode, antiquantGroupSize, normOut,
                                                          &workspaceSize, &executor);
    CHECK_RET(ret == ACL_SUCCESS,
              LOG_PRINT("aclnnWeightQuantMatmulAllReduceAddRmsNormGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
    // 根据第一段接口计算出的workspaceSize申请device内存
    if (workspaceSize > 0) {
        ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
        CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
    }
    // 调用第二段接口
    ret = aclnnInplaceWeightQuantMatmulAllReduceAddRmsNorm(workspaceAddr, workspaceSize, executor, args.stream);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnWeightQuantMatmulAllReduceAddRmsNorm failed. ERROR: %d\n", ret); return ret);
    //(固定写法)同步等待任务执行结束
    ret = aclrtSynchronizeStreamWithTimeout(args.stream, 10000);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
    LOG_PRINT("device%d aclnnWeightQuantMatmulAllReduceAddRmsNorm execute success \n", args.rankId);
    // 释放device资源,需要根据具体API的接口定义修改

    if (x1 != nullptr) {
        aclDestroyTensor(x1);
    }
    if (x2 != nullptr) {
        aclDestroyTensor(x2);
    }
    if (bias != nullptr) {
        aclDestroyTensor(bias);
    }
    if (antiquantScale != nullptr) {
        aclDestroyTensor(antiquantScale);
    }
    if (antiquantOffset != nullptr) {
        aclDestroyTensor(antiquantOffset);
    }
    if (x3 != nullptr) {
        aclDestroyTensor(x3);
    }
    if (residual != nullptr) {
        aclDestroyTensor(residual);
    }
    if (gamma != nullptr) {
        aclDestroyTensor(gamma);
    }
    if (y != nullptr) {
        aclDestroyTensor(y);
    }
    if (normOut != nullptr) {
        aclDestroyTensor(normOut);
    }
    if (x1DeviceAddr != nullptr) {
        aclrtFree(x1DeviceAddr);
    }
    if (x2DeviceAddr != nullptr) {
        aclrtFree(x2DeviceAddr);
    }
    if (biasDeviceAddr != nullptr) {
        aclrtFree(biasDeviceAddr);
    }
    if (antiquantScaleDeviceAddr != nullptr) {
        aclrtFree(antiquantScaleDeviceAddr);
    }
    if (antiquantOffsetDeviceAddr != nullptr) {
        aclrtFree(antiquantOffsetDeviceAddr);
    }
    if (x3DeviceAddr != nullptr) {
        aclrtFree(x3DeviceAddr);
    }
    if (residualDeviceAddr != nullptr) {
        aclrtFree(residualDeviceAddr);
    }
    if (gammaDeviceAddr != nullptr) {
        aclrtFree(gammaDeviceAddr);
    }
    if (yDeviceAddr != nullptr) {
        aclrtFree(yDeviceAddr);
    }
    if (normOutDeviceAddr != nullptr) {
        aclrtFree(normOutDeviceAddr);
    }
    if (workspaceSize > 0) {
        aclrtFree(workspaceAddr);
    }
    aclrtDestroyStream(args.stream);
    HcclCommDestroy(args.hcclComm);
    aclrtDestroyContext(args.context);
    aclrtResetDevice(args.rankId);
    return 0;
}

int main(int argc, char *argv[]) {
    int ret;
    int32_t devices[ndev];
    for (int i = 0; i < ndev; i++) {
        devices[i] = i;
    }
    HcclComm comms[128];
    ret = aclInit(nullptr);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
    // 初始化集合通信域
    for (int i = 0; i < ndev; i++) {
        ret = aclrtSetDevice(devices[i]);
        CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
    }
    ret = HcclCommInitAll(ndev, devices, comms);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("HcclCommInitAll failed. ERROR: %d\n", ret); return ret);
    Args args[ndev];
    aclrtStream stream[ndev];
    aclrtContext context[ndev];
    for (uint32_t rankId = 0; rankId < ndev; rankId++) {
        ret = aclrtSetDevice(rankId);
        CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
        ret = aclrtCreateContext(&context[rankId], rankId);
        CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateContext failed. ERROR: %d\n", ret); return ret);
        ret = aclrtCreateStream(&stream[rankId]);
        CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
    }
    // 启动多线程
    std::vector<std::unique_ptr<std::thread>> threads(ndev);
    for (uint32_t rankId = 0; rankId < ndev; rankId++) {
        args[rankId].rankId = rankId;
        args[rankId].hcclComm = comms[rankId];
        args[rankId].stream = stream[rankId];
        args[rankId].context = context[rankId];
        threads[rankId].reset(
                new(std::nothrow) std::thread(&launchOneThreadweightQuantmatmulAllReduceAddRmsNorm, std::ref(args[rankId])));
    }
    for (uint32_t rankId = 0; rankId < ndev; rankId++) {
        threads[rankId]->join();
    }
    aclFinalize();
    return 0;
}