下载
中文
注册
我要评分
文档获取效率
文档正确性
内容完整性
文档易理解
在线提单
论坛求助
昇腾小AI

Axpy

函数功能

源操作数(srcLocal)中每个元素与标量求积后和目的操作数(dstLocal)中的对应元素相加,计算公式如下,其中PAR表示矢量计算单元一个迭代能够处理的元素个数:

函数原型

  • tensor前n个数据计算
    1
    2
    template <typename T, typename U>
    __aicore__ inline void Axpy(const LocalTensor<T>& dstLocal, const LocalTensor<U>& srcLocal, const U& scalarValue, const int32_t& calCount)
    
  • tensor高维切分计算
    • mask逐bit模式
      1
      2
      template <typename T, typename U, bool isSetMask = true>
      __aicore__ inline void Axpy(const LocalTensor<T>& dstLocal, const LocalTensor<U>& srcLocal, const U& scalarValue, uint64_t mask[2], const uint8_t repeatTimes, const UnaryRepeatParams& repeatParams)
      
    • mask连续模式
      1
      2
      template <typename T, typename U, bool isSetMask = true>
      __aicore__ inline void Axpy(const LocalTensor<T>& dstLocal, const LocalTensor<U>& srcLocal, const U& scalarValue, uint64_t mask, const uint8_t repeatTimes, const UnaryRepeatParams& repeatParams)
      

参数说明

表1 模板参数说明

参数名

描述

T

目的操作数数据类型。

U

源操作数数据类型。

isSetMask

是否在接口内部设置mask。

  • true,表示在接口内部设置mask。
  • false,表示在接口外部设置mask,开发者需要使用SetVectorMask接口设置mask值。这种模式下,本接口入参中的mask值必须设置为MASK_PLACEHOLDER。
表2 参数说明

参数名称

类型

说明

dstLocal

输出

目的操作数。

类型为LocalTensor,支持的TPosition为VECIN/VECCALC/VECOUT。

Atlas 训练系列产品,支持的数据类型为:half/float

Atlas推理系列产品AI Core,支持的数据类型为:half/float

Atlas A2训练系列产品/Atlas 800I A2推理产品,支持的数据类型为:half/float

Atlas 200/500 A2推理产品,支持的数据类型为:half/float

srcLocal

输入

源操作数。

类型为LocalTensor,支持的TPosition为VECIN/VECCALC/VECOUT。

Atlas 训练系列产品,支持的数据类型为:half/float

Atlas推理系列产品AI Core,支持的数据类型为:half/float

Atlas A2训练系列产品/Atlas 800I A2推理产品,支持的数据类型为:half/float

Atlas 200/500 A2推理产品,支持的数据类型为:half/float

scalarValue

输入

源操作数,scalar标量。支持的数据类型为:half/float。scalarValue的数据类型需要和srcLocal保持一致。

calCount

输入

输入数据元素个数。

参数取值范围和操作数的数据类型有关,数据类型不同,能够处理的元素个数最大值不同。

矢量计算单元,每个迭代读取连续256 Bytes数据进行计算,通过多次迭代完成所有数据的读取与计算。所以当操作数为16位时,calCount∈[1,128*255],255表示迭代次数的最大值,128表示每次迭代内能够处理128个16位数据;当操作数为32位时,calCount∈[1,64*255],64表示每次迭代内能够处理64个32位数据。

mask

输入

mask用于控制每次迭代内参与计算的元素。

  • 连续模式:表示前面连续的多少个元素参与计算。取值范围和操作数的数据类型有关,数据类型不同,每次迭代内能够处理的元素个数最大值不同。当操作数为16位时,mask∈[1, 128];当操作数为32位时,mask∈[1, 64];当操作数为64位时,mask∈[1, 32]。
  • 逐bit模式:可以按位控制哪些元素参与计算,bit位的值为1表示参与计算,0表示不参与。参数类型为长度为2的uint64_t类型数组。

    例如,mask=[8, 0],8=0b1000,表示仅第4个元素参与计算。

    参数取值范围和操作数的数据类型有关,数据类型不同,每次迭代内能够处理的元素个数最大值不同。当操作数为16位时,mask[0]、mask[1]∈[0, 264-1]并且不同时为0;当操作数为32位时,mask[1]为0,mask[0]∈(0, 264-1];当操作数为64位时,mask[1]为0,mask[0]∈(0, 232-1]。

repeatTimes

输入

重复迭代次数。

矢量计算单元,每次读取连续的256 Bytes数据进行计算,为完成对输入数据的处理,必须通过多次迭代(repeat)才能完成所有数据的读取与计算。repeatTimes表示迭代的次数。

关于该参数的具体描述请参考通用参数说明

repeatParams

输入

控制操作数地址步长的参数。UnaryRepeatParams类型,包含操作数相邻迭代间相同datablock的地址步长,操作数同一迭代内不同datablock的地址步长等参数。

相邻迭代间的地址步长参数说明请参考repeatStride(相邻迭代间相同datablock的地址步长);同一迭代内datablock的地址步长参数说明请参考dataBlockStride(同一迭代内不同datablock的地址步长)

返回值

支持的型号

Atlas 训练系列产品

Atlas推理系列产品AI Core

Atlas A2训练系列产品/Atlas 800I A2推理产品

Atlas 200/500 A2推理产品

约束说明

  • 为了节省地址空间,开发者可以定义一个Tensor,供源操作数与目的操作数同时使用(即地址重叠),约束如下:
    • 对于单次repeat,且源操作数与目的操作数之间要求100%完全重叠,不支持部分重叠。
    • 对于多次repeat(repeatTimes>1),若源操作数与目的操作数之间存在依赖,即第N次迭代的目的操作数是第N+1次的源操作数,这种情况是不支持地址重叠的。
  • 该接口支持的精度组合如下:
    • half精度组合:srcLocal数据类型=half;scalar数据类型=half;dstLocal数据类型=half;PAR=128
    • float精度组合:srcLocal数据类型=float;scalar数据类型=float;dstLocal数据类型=float;PAR=64
    • mix精度组合:srcLocal数据类型=half;scalar数据类型=half;dstLocal数据类型=float;PAR=64
  • 使用tensor高维切分计算接口时,mix精度组合模式下,一个迭代处理的源操作数元素个数需要和目的操作数保持一致,所以每次迭代选取前4个datablock参与计算。设置repeatStride参数和mask参数以及地址重叠时,需要考虑该限制。

调用示例

本样例中只展示Compute流程中的部分代码。如果您需要运行样例代码,请将该代码段拷贝并替换更多样例完整样例模板中Compute函数的部分代码即可。

  • tensor高维切分计算样例-mask连续模式
     1
     2
     3
     4
     5
     6
     7
     8
     9
    10
    11
    // repeatTimes = 4, mask = 128, 128 elements one repeat, 512 elements total
    // half精度组合
    // dstBlkStride, srcBlkStride = 1, no gap between blocks in one repeat
    // dstRepStride, srcRepStride = 8, no gap between repeats 
    AscendC::Axpy(dstLocal, srcLocal, (half)2.0, 128, 4,{ 1, 1, 8, 8 });
    
    // mix精度组合 dstLocal数据类型=float
    // repeatTimes = 8, mask = 64, 64 elements one repeat, 512 elements total
    // dstBlkStride, srcBlkStride = 1, no gap between blocks in one repeat
    // dstRepStride = 8, srcRepStride = 4, no gap between repeats 
    AscendC::Axpy(dstLocal, srcLocal, (half)2.0, 64, 8,{ 1, 1, 8, 4 }); // 每次迭代选取源操作数前4个datablock参与计算
    
  • tensor高维切分计算样例-mask逐bit模式
    1
    2
    3
    4
    5
    uint64_t mask[2] = { 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF };
    // repeatTimes = 4, 128 elements one repeat, 512 elements total, half精度组合
    // dstBlkStride, srcBlkStride = 1, no gap between blocks in one repeat
    // dstRepStride, srcRepStride = 8, no gap between repeats
    AscendC::Axpy(dstLocal, srcLocal, (half)2.0, mask, 4,{ 1, 1, 8, 8 });
    
  • tensor前n个数据计算样例
    1
    AscendC::Axpy(dstLocal, src0Local, (half)2.0, 512);// half精度组合
    
搜索结果
找到“0”个结果

当前产品无相关内容

未找到相关内容,请尝试其他搜索词