PairReduceSum
函数功能
PairReduceSum:相邻两个(奇偶)元素求和,例如(a1, a2, a3, a4, a5, a6...),相邻两个数据求和为(a1+a2, a3+a4, a5+a6, ......)。归约指令的总体介绍请参考归约指令。
函数原型
- mask逐bit模式
1 2
template <typename T, bool isSetMask = true> __aicore__ inline void PairReduceSum(const LocalTensor<T>& dstLocal, const LocalTensor<T>& srcLocal,const int32_t repeat, const uint64_t mask[2], const int32_t dstRepStride, const int32_t srcBlkStride,const int32_t srcRepStride)
- mask连续模式
1 2
template <typename T, bool isSetMask = true> __aicore__ inline void PairReduceSum(const LocalTensor<T>& dstLocal, const LocalTensor<T>& srcLocal,const int32_t repeat, const int32_t maskCount, const int32_t dstRepStride, const int32_t srcBlkStride,const int32_t srcRepStride)
参数说明
参数名 |
描述 |
---|---|
T |
操作数数据类型。 |
isSetMask |
是否在接口内部设置mask。
|
参数名称 |
输入/输出 |
含义 |
---|---|---|
dstLocal |
输出 |
目的操作数。 类型为LocalTensor,支持的TPosition为VECIN/VECCALC/VECOUT。 Atlas 训练系列产品,支持的数据类型为:half Atlas推理系列产品AI Core,支持的数据类型为:half/float Atlas A2训练系列产品/Atlas 800I A2推理产品,支持的数据类型为:half/float Atlas 200/500 A2推理产品,支持的数据类型为:half/float |
srcLocal |
输入 |
源操作数。 类型为LocalTensor,支持的TPosition为VECIN/VECCALC/VECOUT。 Atlas 训练系列产品,支持的数据类型为:half Atlas推理系列产品AI Core,支持的数据类型为:half/float Atlas A2训练系列产品/Atlas 800I A2推理产品,支持的数据类型为:half/float Atlas 200/500 A2推理产品,支持的数据类型为:half/float |
repeat |
输入 |
迭代次数。取值范围为[0, 255]。 |
mask[2]/ maskCount |
输入 |
|
dstRepStride |
输入 |
目的操作数相邻迭代间的地址步长。以一个repeat归约后的长度为单位。PairReduce完成后,一个repeat的长度减半。即单位为128Byte。 注意,此参数值Atlas 训练系列产品不支持配置0。 |
srcBlkStride |
输入 |
单次迭代内datablock的地址步长。详细说明请参考dataBlockStride(同一迭代内不同datablock的地址步长)。 |
srcRepStride |
输入 |
源操作数相邻迭代间的地址步长,即源操作数每次迭代跳过的datablock数目。详细说明请参考repeatStride(相邻迭代间相同datablock的地址步长)。 |
返回值
无
支持的型号
Atlas 训练系列产品
Atlas推理系列产品AI Core
Atlas A2训练系列产品/Atlas 800I A2推理产品
Atlas 200/500 A2推理产品
注意事项
- 操作数地址偏移对齐要求请参见通用约束。
- 如果两两相加的两个元素mask位未配置(即当前两个元素不参与运算),对于Atlas 200/500 A2推理产品,对应的目的操作数中的值会置为0,对于其他产品型号,对应的目的操作数中的值不会变化。比如float场景下对64个数使用当前指令,maskCount配置为62,表示最后两个元素不参与运算,对于Atlas 200/500 A2推理产品,目的操作数中最后一个值会返回0;对于其他产品型号,目的操作数中最后一个值不会变化。
调用示例
- PairReduceSum-tensor高维切分计算样例-mask连续模式
1 2 3 4 5 6
uint64_t mask = 256/sizeof(half); int repeat = 1; // repeat = 1, 128 elements one repeat, 128 elements total // srcBlkStride = 1, no gap between blocks in one repeat // dstRepStride = 1, srcRepStride = 8, no gap between repeats AscendC::PairReduceSum<half>(dstLocal, srcLocal, repeat, mask, 1, 1, 8);
- PairReduceSum-tensor高维切分计算样例-mask逐bit模式
1 2 3 4 5 6
uint64_t mask[2] = { UINT64_MAX, UINT64_MAX }; int repeat = 1; // repeat = 1, 128 elements one repeat, 128 elements total // srcBlkStride = 1, no gap between blocks in one repeat // dstRepStride = 1, srcRepStride = 8, no gap between repeats AscendC::PairReduceSum<half>(dstLocal, srcLocal, repeat, mask, 1, 1, 8);
- 示例结果
输入数据(src_gm): [-3.441, 7.246, -0.02759, -6.324, 3.693, -7.984, -4.246, 6.332, -3.734, -2.699, -6.91, 7.887, -3.631, 5.219, 6.539, 8.688, 6.523, -6.789, -8.547, 4.258, 1.344, -8.469, -0.9253, -3.914, 3.293, -9.828, 7.082, 5.961, 2.133, 1.959, 3.928, -1.062, 9.18, -1.725, -3.645, 1.457, -2.328, -0.9487, -0.2849, -2.998, -9.281, 3.137, 0.4028, 5.961, -6.25, 2.406, -6.203, -2.699, 4.914, 1.653, -6.383, 6.855, 9.164, 0.6646, -2.854, 3.18, -0.5884, 0.4258, -5.773, -2.152, 4.258, 4.129, -8.719, -8.828, 6.145, 7.387, 1.386, -4.684, 6.324, -1.275, -1.816, 3.357, 6.832, -1.059, -9.852, -8.539, 2.938, -2.002, 9.625, -4.387, -1.309, 8.289, 2.906, -1.035, 7.723, 4.727, -6.477, 2.389, 6.75, -6.688, -0.04248, -6.613, -3.424, 7.145, 4.836, -5.617, -5.855, -5.234, -9.422, -9.852, -8.531, 2.115, 5.109, -8.094, -6.238, 9.898, -6.848, -6.051, 7.109, 4.227, -0.6187, -3.492, -4.352, 1.344, 1.526, 2.572, 2.16, -1.135, 9.812, 1.426, -8, 3.291, -2.039, 5.93, -5.52, -5.156, -9.422, 0.2236] 输出数据(dst_gm): [3.805, -6.352, -4.289, 2.086, -6.434, 0.9766, 1.588, 15.23, -0.2656, -4.289, -7.125, -4.84, -6.535, 13.05, 4.094, 2.865, 7.453, -2.188, -3.277, -3.283, -6.145, 6.363, -3.844, -8.906, 6.566, 0.4727, 9.828, 0.3262, -0.1626, -7.926, 8.391, -17.55, 13.53, -3.297, 5.047, 1.541, 5.773, -18.39, 0.9355, 5.238, 6.98, 1.871, 12.45, -4.086, 0.0625, -6.656, 3.721, -0.7812, -11.09, -19.28, -6.414, -2.984, 3.66, -12.9, 11.34, -4.109, -3.008, 4.098, 1.025, 11.23, -4.711, 3.891, -10.67, -9.195]
- 完整代码样例
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
#include "kernel_operator.h" class KernelReduce { public: __aicore__ inline KernelReduce() {} __aicore__ inline void Init(__gm__ uint8_t* src, __gm__ uint8_t* dstGm) { srcGlobal.SetGlobalBuffer((__gm__ half*)src); dstGlobal.SetGlobalBuffer((__gm__ half*)dstGm); pipe.InitBuffer(inQueueSrc, 1, srcDataSize * sizeof(half)); pipe.InitBuffer(outQueueDst, 1, dstDataSize * sizeof(half)); } __aicore__ inline void Process() { CopyIn(); Compute(); CopyOut(); } private: __aicore__ inline void CopyIn() { AscendC::LocalTensor<half> srcLocal = inQueueSrc.AllocTensor<half>(); AscendC::DataCopy(srcLocal, srcGlobal, srcDataSize); inQueueSrc.EnQue(srcLocal); } __aicore__ inline void Compute() { AscendC::LocalTensor<half> srcLocal = inQueueSrc.DeQue<half>(); AscendC::LocalTensor<half> dstLocal = outQueueDst.AllocTensor<half>(); half zero(0); AscendC::Duplicate(dstLocal, zero, dstDataSize); //指令执行部分(替换成上述代码) outQueueDst.EnQue<half>(dstLocal); inQueueSrc.FreeTensor(srcLocal); } __aicore__ inline void CopyOut() { AscendC::LocalTensor<half> dstLocal = outQueueDst.DeQue<half>(); AscendC::DataCopy(dstGlobal, dstLocal, dstDataSize); outQueueDst.FreeTensor(dstLocal); } private: AscendC::TPipe pipe; AscendC::TQue<AscendC::QuePosition::VECIN, 1> inQueueSrc; AscendC::TQue<AscendC::QuePosition::VECOUT, 1> outQueueDst; AscendC::GlobalTensor<half> srcGlobal, dstGlobal; int srcDataSize = 128; int dstDataSize = 64; }; extern "C" __global__ __aicore__ void reduce_simple_kernel(__gm__ uint8_t* src, __gm__ uint8_t* dstGm) { KernelReduce op; op.Init(src, dstGm); op.Process(); }