(beta)torch_npu.npu_grid_assign_positive
接口原型
torch_npu.npu_grid_assign_positive(self, overlaps, box_responsible_flags, max_overlaps, argmax_overlaps, gt_max_overlaps, gt_argmax_overlaps, num_gts, pos_iou_thr, min_pos_iou, gt_max_assign_all) -> Tensor
功能描述
执行position-sensitive的候选区域池化梯度计算。
参数说明
- self (Tensor) - float16或float32类型的张量,shape为(n, )。
- overlaps (Tensor) - 数据类型与assigned_gt_inds相同,表示gt_bboxes和bboxes之间的IoU,shape为(k,n)。
- box_responsible_flags (Tensor) - 支持uint8数据类型。表示框是否responsible的标志。
- max_overlaps (Tensor) - 数据类型与assigned_gt_inds. overlaps.max(axis=0)相同。
- argmax_overlaps (Tensor) - 支持uint32数据类型,overlaps.argmax(axis=0)。
- gt_max_overlaps (Tensor) - 数据类型与assigned_gt_inds. overlaps.max(axis=1)相同。
- gt_argmax_overlaps (Tensor) - 支持uint32数据类型, overlaps.argmax(axis=1)。
- num_gts (Tensor) - 支持uint32数据类型,real k ,shape为 (1, )。
- pos_iou_thr (Float) - 正检测框的IoU阈值。
- min_pos_iou (Float) - 检测框被视为正检测框的最小IoU
- gt_max_assign_all (Bool) - 是否将与某个gt有相同最高重叠的所有检测框分配给该gt。
支持的型号
Atlas 训练系列产品 Atlas A2 训练系列产品 Atlas A3 训练系列产品 Atlas 推理系列产品
调用示例
1 2 3 4 5 6 7 8 9 10 | >>> assigned_gt_inds = torch.rand(4).npu() >>> overlaps = torch.rand(2,4).npu() >>> box_responsible_flags = torch.tensor([1, 1, 1, 0], dtype=torch.uint8).npu() >>> max_overlap = torch.rand(4).npu() >>> argmax_overlap = torch.tensor([1, 0, 1, 0], dtype=torch.int32).npu() >>> gt_max_overlaps = torch.rand(2).npu() >>> gt_argmax_overlaps = torch.tensor([1, 0],dtype=torch.int32).npu() >>> output = torch_npu.npu_grid_assign_positive(assigned_gt_inds, overlaps, box_responsible_flags, max_overlap, argmax_overlap, gt_max_overlaps, gt_argmax_overlaps, 128, 0.5, 0., True) >>> output.shape torch.Size([4]) |
父主题: torch_npu